Метод решения задачи - Программа имитационного моделирования работы банка

Имитационное моделирование на ЭВМ процесса функционирования автоматизированной системы управления работой банка позволяет получить численное решение поставленной задачи. Суть рассматриваемого приближенного метода решения состоит в проведении ряда случайных испытаний вероятностной модели исследуемой системы и получении совокупности реализаций случайных процессов изменения состояния.

В результате многократной реализации случайных процессов определяются оценки вероятности тех или иных событий и средние значения случайных величин. Имитационное моделирование связано с необходимостью воспроизведения случайных событий и величин, распределенных по произвольному закону. Существует несколько способов генерации случайных величин и формирования их распределений. Модель системы управления работой банка включает в себя:

    - Приход клиентов в банк ; - Время обслуживания клиентов у касс.

По условию поставленной задачи приход клиентов в банк описывается пуассоновским потоком с интенсивностью r. Для лучшего понимания сути распределения Пуассона необходимо знать основные определения:

Интенсивность потока - среднее число событий, которое появляется в единицу времени.

Поток - последовательность событий, которые наступают в случайные моменты времени.

Закон распределения Пуассона выражается формулой (1.1).

Будем моделировать интервал времени между двумя последовательно зашедшими в банк клиентами методом Монте-Карло с датчиком случайных чисел на интервале [0 - 1].

Совокупность независимых случайных событий, образующих полную группу, характеризуется вероятностями появления каждого из событий, причем. Для моделирования этой совокупности случайных событий используется генератор случайных чисел, равномерно распределенных в интервале [0 - 1]. При делении отрезка [0 - 1] на n частей, численно равных, возникновение события устанавливается путем определения нахождения случайного числа Х в пределах интервала при проверке условия, где изменяется от нуля до n. При имеем ; при имеем и так далее. При подстановке в формулу (1.1) получим: экономический моделирование пуассон

;

;

И так далее.

Причем (мин.) - максимальное количество ожидания клиентов.

Так как опыт проводится многократно, то, очевидно, что частота попадания случайных чисел на каждый из отрезков, определяющихся их длиной, и соответствует полученным вероятностям.

Моделирование времени обслуживания клиентов у касс происходит по экспоненциальному закону распределения, формула которого представлена выше (формула (1.2)).

Время обслуживания клиентов, как и любая иная случайная величина, описывается функцией распределения, определяемая как вероятность случайного события, заключающегося в том, что время обслуживания клиентов меньше некоторого заданного времени :

Эта вероятность рассматривается как функция во всем диапазоне возможных значений величины. Функция распределения любой случайной величины является неубывающей функцией времени. Примерный вид функции дан на рисунке 3.

Так как значения не могут быть отрицательными, то. При величина стремится к единице. Таким образом, функция распределения времени обслуживания клиентов:

(1.3)

Где - параметр распределения (среднее время обслуживания клиентов у кассы).

Соответственно плотность распределения:

(1.4)

Для моделирования времени обслуживания клиента у кассы проинтегрируем функцию распределения :

(1.5)

От датчика случайных чисел равномерно распределенных на интервале [0 - 1] получаем очередное число Х, которое подставляем в формулу (1.5) и вычисляем :

(1.6)

Из соотношения (1.6) найдем соответствующее Х, которое будем принимать за случайное число, обозначающее время обслуживания данной кассой.

Похожие статьи




Метод решения задачи - Программа имитационного моделирования работы банка

Предыдущая | Следующая