Постановка задачи, Понятие о кубатурных формулах, Метод ячеек - Вычисление кратных интегралов методом ячеек с автоматическим выбором шага

Найти при помощи метода ячеек значение интеграла

,

Где - область, ограниченная функциями

.

2. Теоретическая часть

Рассмотрим K-мерный интеграл вида:

(1)

Где - некоторая K-мерная точка. Далее для простоты все рисунки будут сделаны для случая K=2.

Понятие о кубатурных формулах

Кубатурные формулы или, иначе формулы численных кубатур предназначены для численного вычисления кратных интегралов.

Пусть функция

Определена и непрерывна в некоторой ограниченной области. В этой области выбирается система точек (узлов)

.

Для вычисления интеграла

Приближенно полагают:

(2)

Чтобы найти коэффициенты, потребуем точного выполнения кубатурной формулы (2) для всех полиномов

(3)

Степень которых не превышает заданного числа. Для этого необходимо и достаточно, чтобы формула (2) была точной для произведения степеней

.

Полагая в (1) , будем иметь:

(4)

Таким образом, коэффициенты формулы (2), вообще говоря, могут быть определены из системы линейных уравнений (4).

Для того чтобы система (4) была определенной, необходимо, чтобы число неизвестных было равно числу уравнений. В случае получаем:

Метод ячеек

Рассмотрим K-мерный интеграл по пространственному параллелепипеду

.

По аналогии с формулой средних можно приближенно заменить функцию на ее значение в центральной точке параллелепипеда. Тогда интеграл легко вычисляется:

(5)

Для повышения точности можно разбить область на прямоугольные ячейки (рис. 2). Приближенно вычисляя интеграл в каждой ячейке по формуле средних и обозначая через

Соответственно площадь ячейки и координаты ее центра, получим:

(6)

Справа стоит интегральная сумма; следовательно, для любой непрерывной

Она сходится к значению интеграла, когда периметры всех ячеек стремятся к нулю.

Оценим погрешность интегрирования. Формула (5) по самому ее выводу точна для

.

Но непосредственной подстановкой легко убедиться, что формула точна и для любой линейной функции. В самом деле, разложим функцию по формуле Тейлора:

(7)

Где,

А все производные берутся в центре ячейки. Подставляя это разложение в правую и левую части квадратурной формулы (5) и сравнивая их, аналогично одномерному случаю легко получим выражение погрешности этой формулы:

(8)

Ибо все члены разложения, нечетные относительно центра симметрии ячейки, взаимно уничтожаются.

Пусть в обобщенной квадратурной формуле (6) стороны пространственного параллелепипеда разбиты соответственно на N1, N2, ..., Nk равных частей. Тогда погрешность интегрирования (8) для единичной ячейки равна:

Суммируя это выражение по всем ячейкам, получим погрешность обобщенной формулы:

(9)

Т. е. формула имеет второй порядок точности. При этом, как и для одного измерения, можно применять метод Рунге-Ромберга, но при одном дополнительном ограничении: сетки по каждой переменной сгущаются в одинаковое число раз.

Обобщим формулу ячеек на более сложные области. Рассмотрим случай K=2. Легко сообразить, что для линейной функции

Формула типа (5) будет точна в области произвольной формы, если под S подразумевать площадь области, а под

    -координаты центра тяжести, вычисляемые по обычным формулам: (10)

Разумеется, практическую ценность это имеет только для областей простой формы, где площадь и центр тяжести легко определяется; например, для треугольника, правильного многоугольника, трапеции. Но это значит, что обобщенную формулу (6) можно применять к областям, ограниченным ломаной линией, ибо такую область всегда можно разбить на прямоугольники и треугольники.

Для области с произвольной границей формулу (6) применяют иным способом. Наложим на область сетку из K-мерных параллелепипедов (рис.3). Те ячейки сетки, все точки которых принадлежат области, назовем внутренними; если часть точек ячейки принадлежит области, а часть - нет, то назовем ячейку граничной. Объем внутренней ячейки равен произведению ее сторон. Объемом граничной ячейки будем считать объем той ее части, которая попадает внутрь ; этот объем вычислим приближенно. Эти площади подставим в (6) и вычислим интеграл.

Оценим погрешность формулы (6). В каждой внутренней ячейке ошибка составляет по отношению к значению интеграла по данной ячейке. В каждой граничной ячейке относительная ошибка есть, ибо центр ячейки не совпадает с центром тяжести входящей в интеграл части. Но самих граничных ячеек примерно в раз меньше, чем внутренних. Поэтому при суммировании по ячейкам общая погрешность будет, если функция дважды непрерывно дифференцируема; это означает второй порядок точности.

Вычисление объема граничной ячейки довольно трудоемко, ибо требует определения положения границы внутри ячейки. Можно вычислять интегралы по граничным ячейкам более грубо или вообще не включать их в сумму (6). Погрешность при этом будет, и для хорошей точности потребуется более подробная сетка.

Мы видели, что к области произвольной формы метод ячеек трудно применять; поэтому всегда желательно заменой переменных преобразовать область интегрирования в прямоугольный параллелепипед (это относится практически ко всем методам вычисления кратных интегралов).

Похожие статьи




Постановка задачи, Понятие о кубатурных формулах, Метод ячеек - Вычисление кратных интегралов методом ячеек с автоматическим выбором шага

Предыдущая | Следующая