Последовательное интегрирование - Вычисление кратных интегралов методом ячеек с автоматическим выбором шага

Снова рассмотрим интеграл по K-мерной области, разбитой сеткой на ячейки (рис. 2). Его можно вычислить последовательным интегрированием:

Каждый однократный интеграл легко вычисляется на данной сетке по квадратурным формулам типа:

Последовательное интегрирование по всем направлениям приводит к кубатурным формулам, которые являются прямым произведением одномерных квадратурных формул:

(11)

Например, при K=2, если по каждому направлению выбрана обобщенная формула трапеций, а сетка равномерная, то веса кубатурной формулы равны

Соответственно для внутренних, граничных и угловых узлов сетки. Легко показать, что для дважды непрерывно дифференцируемых функций эта формула имеет второй порядок точности, и к ней применим метод Рунге-Ромберга.

Вообще говоря, для разных направлений можно использовать квадратурные формулы разных порядков точности

.

Тогда главный член погрешности имеет вид:

Желательно для всех направлений использовать квадратурные формулы одинакового порядка точности.

Можно подобрать веса и положение линий сетки так, чтобы одномерная квадратурная формула была точна для многочлена максимальной степени, т. е. была бы формулой Гаусса, тогда, для случая K=2:

(12)

Где - нули многочленов Лежандра и соответствующие веса. Эти формулы рассчитаны на функции высокой гладкости и дают для них большую экономию в числе узлов по сравнению с более простыми формулами.

Произвольная область. Метод последовательного интегрирования можно применять к области произвольной формы, например, с криволинейной границей. Рассмотрим этот случай при K=2. Для этого проведем через область хорды, параллельные оси, и на них введем узлы, расположенные на каждой хорде так, как нам требуется (рис. 4). Представим интеграл в виде:

Сначала вычислим интеграл по вдоль каждой хорды по какой-нибудь одномерной квадратурной формуле, используя введенные узлы. Затем вычислим интеграл по ; здесь узлами будут служить проекции хорд на ось ординат.

При вычислении интеграла по имеется одна тонкость. Если область ограничена гладкой кривой, то при

Длина хорды стремится к нулю не линейно, а как

;

Значит, вблизи этой точки

.

То же будет при

.

Поэтому интегрировать непосредственно по формулам высокого порядка точности бессмысленно. Целесообразно выделить из основную особенность в виде веса

,

Которому соответствуют ортогональные многочлены Чебышева второго рода.

Тогда второе интегрирование выполняется по формулам Гаусса-Кристоффеля:

(13)

Где, а

И - нули и веса многочленов Чебышева второго рода.

Чтобы можно было применять эту формулу, надо ординаты хорд на рис. 4 заранее выбрать в соответствии с узлами (13). Если это не было сделано, то придется ограничиться интегрированием по обобщенной формуле трапеций, причем ее эффективный порядок точности в этом случае будет ниже второго.

Похожие статьи




Последовательное интегрирование - Вычисление кратных интегралов методом ячеек с автоматическим выбором шага

Предыдущая | Следующая