Механизм нитрования ароматических углеводородов - Синтез пара-нитродифенила. Теоретические основы нитрования

Процесс нитрования углеводородов смесью азотной и серной кислот протекает в гетерогенной среде, так как образуются две фазы - органическая (углеводородная) и кислотная. Благодаря частичной взаимно растворимости реагирующие компоненты распределяются между двумя фазами, и реакция протекает как в этих фазах, так и на поверхности их раздела.

Таблица 2. Показатели процессов нитрования некоторых ароматических углеводородов

Исходный углеводород

Нитросоединение

Ф. Н.А.

Расход HNO3 в% от теоретического

Бензол

Мононитробензол

70

103-105

Мононитробензол

Динитробензол

88

110-115

Толуол

Мононитротолуол

70

103-105

Ксилол

Динитроксилол

72

110-115

Нафталин

Мононитронафталин

61

103-105

Мононитронафталин

Динитронафталин

72

130-140

Легконитруемые углеводороды успевают прореагировать с ионом нитрония на поверхности раздела фаз; в этом случае существенное влияние на скорость реакции оказывает величина этой поверхности, которую можно значительно увеличить интенсивным перемешиванием. Для труднонитруемых углеводородов процесс не успевает пройти на поверхности раздела фаз, и реакция протекает в объеме той фазы, в которую проникают реагенты; для таких реакций поверхность раздела меньше влияет на степень превращения углеводорода и перемешивание способствует лишь насыщению одной фазы другой. Труднонитруемые вещества реагируют в основном в кислотном слое. В органический слой проникает главным образом азотная кислота, которая в отсутствие серной кислоты обладаем меньшей нитрующей способностью.

Стадия отрыва протона от ?- комплекса необратима, что делает необратимой реакцию в целом. Это объясняется сильным электроноакцепторным эффектом нитрогруппы, препятствующим протонированию по связанному с ней атому углерода. Однако если нитрогруппа занимает стерически затрудненное положение, при действии кислот может происходить денитрование, например в 9-нитроантрацене, 3,4,6-триизопропил-2-нитро-N-ацетиланилине или миграция нитрогруппы - например в 3-замещенных 2-нитрофенолах и в 3-замещенных 2-нитроанилинах. Миграция нитрогруппы в 3-R-2-нитроанилинах происходит из геминального узла в ?- комплексе (3), находящемся в равновесии с анилиниевым ионом (4)

(4) (3)

С использованием спектров ЯМР 15N показано, что превращение 2,3-динитроанилина (5) в смесь 2,5- (6) и 3,4-динитроанилинов (7) (соотношение 2:1) в 98% H2SO4 при 110OC не менее чем на 95% протекает внутримолекулярно.

(5) (6) (7)

Константа скорости нитрования по мере увеличения кислотности возрастает, достигая максимума при концентрации H2SO4 90%, а затем снижается. Поскольку содержание ионов NO2+ при концентрации H2SO4 > 90% остается постоянным вследствие полного превращения азотной кислоты, снижение скорости в этом интервале относят к изменению главным образом коэффициента активности субстрата, возможно, в результате образования межмолекулярных водородных связей или протонирования. Для соединений, содержащих электроноакцепторные заместители, процесс протонирования цикла затруднен, так как электронная плотность на атомах углерода мала. При этом можно для увеличения концентрации катиона нитрония использовать концентрированную азотную кислоту и олеум.

Из других сильных кислот кроме серной для нитрования применяют фосфорную, хлорную, трифторуксусную, метан - и трифторметансульфокислоты.

Мощным нитрующим реагентом являются соли нитрония, которые могут быть приготовлены взаимодействием азотной кислоты с HF и кислотами Льюиса (BF3, PF3, SbF5).

Как уже говорилось ранее возможно проведение реакции нитрования и в азотной кислоте, в отсутствие серной кислоты. Преимуществом данного метода является то, что азотная кислота может быть регенерирована. При этом отпадает проблема утилизация разбавленной серной кислоты, азотная кислота возвращается в сферу производства. К существенным недостаткам метода относится необходимость использования коррозионностойкой аппаратуры (эмалированной или из нержавеющей стали), так как разбавленная кислота вызывает ее коррозию. При концентрации азотной кислоты 75% и выше в растворе с помощью спектров комбинационного рассеяния обнаруживается нитроний-катион (в небольших концентрациях, около 2%). Но даже в среде концентрированной серной кислоты не всегда достаточное генерирование ионов нитрония NO2+.

Однако нитрование проводят азотной кислотой с концентрацией от 15% до 63%. В ряде случаев для успеха реакции требуется присутствие азотистой кислоты (соединений азота (III)). Например, нафталин-1,3,5-трисульфокислота, которую в промышленности гладко нитруют в положение 8 действием технической нитрующей смеси, остается неизменной в тех же условиях, если применяется чистая серная кислота и азотная кислота, не содержащая оксидов азота. Для нитрования нафталина азотной кислотой в 56% H2SO4 необходима добавка NaNO2. При нитровании активированных ароматических соединений - N, N-диалкиланилинов, фенолов, анизола, мезитилена и др. азотистая кислота оказывает каталитическое влияние.

В связи с тем, что катион нитрония имеет малый радиус и высокий заряд, он является "жестким" реагентом и атакует ароматический цикл по положению с наибольшей электронной плотностью. При наличии электроноакцепторных групп в фенильном цикле наибольший отрицательный заряд локализован на атоме углерода в м-положении и углероде, связанном с этим заместителем. Существенно меньшая величина электронной плотности имеется в о - и п-положении кольца.

В результате реакции образуется смесь м-, о - и п-нитропроизводных, а также нитробензол.

Выход изомерных нитросоединений (без учета образующегося нитробензола), приведен в таблице 3.

Таблица 3. Выходы нитропроизводных

Изомеры

Заместители X, выход в%

Орто-

18,5

28,3

19

17,1

9

Мета-

80,5

68,4

72

80,7

90

Пара-

1

3,3

9

2,2

1

Высокий выход о-нитропроизводных при нитровании (так называемая "орто-ориентация") может быть объяснен ипсо-атакой катиона нитрония по атому углерода, связанному с электроноакцепторным заместителем, и последующим 1,2-сдвигом с получением "нормального" ?- комплекса.

Способность к ипсо-замещению используют в техническом органическом синтезе. При получении пикриновой кислоты для предотвращения окисления фенола азотной кислотой, ведущего к значительному осмолению реакционной массы, ароматическое ядро вначале дезактивируют с помощью введения электроноакцепторных сульфогрупп и только затем проводят нитрование:

На первой стадии образуется фенол-2,4-дисульфокислота, сульфогруппы в которой далее замещаются нитрогруппами и проходит нитрование в положение 6 цикла.

Синтез о - и п-нитрофенола, а также 2,4-динитрофенола осуществляют с помощью щелочного гидролиза соответствующих хлорбензолов. В последнее время разработан способ получения и пикриновой кислоты с помощью нитрования 2,4-динитрохлорбензола. Нитрование фенола не проводят, так как реакция идет очень энергично, а также в основном в связи с тем, что азотная кислота (особенно разбавленная) обладает высокой окисляющей способностью. Так, даже при нитровании бензола образуется примесь нитрофенолов за счет окисления азотной кислотой.

Подобно сульфогруппе ипсо-замещению подвергаются и другие группировки.

Низкая региоселективность наблюдается при нитровании бензолсульфокислоты. Наряду с м-нитробензолсульфокислотой образуется до 15% о-изомера. Однако трудно объяснить наличие в реакционной массе нитробензола, т. к. концентрация отработанной серной кислоты составляет 93 - 95%, а в этих условиях процесс десульфирования маловероятен.

В промышленности м-нитробензолсульфокислоту получают сульфированием нитробензола, при этом образуется только один изомер.

Аномальные результаты реакции нитрования объясняются тем, что происходит "ипсо"-замещение с последующим 1,2-сдвигом:

Катион нитрония атакует атом углерода связанный с сульфогруппой. Образующийся "аномальный" - комплекс переходит в ароматическое состояние как за счет отщепления сульфогруппы, так и за счет смещения нитрогруппы к соседнему атому углерода (1,2-сдвиг) и отрыву протона от "нормального" - комплекса.

Для решения проблемы низкой селективности процесса проводят нитрование в среде уксусного ангидрида. При нитровании в уксусном ангидриде образуется ацетилнитрат, который в малой степени дает катион нитрония:

Ацетилнитрат пожаро - и взрывоопасен, применяют этот реагент в тех случаях, когда с помощью других методов не удается достичь нужного результата. В связи с низкой концентрацией электрофильного агента в растворе селективность процесса увеличивается. Пример сравнительной селективности при нитровании пара-хлортолуола (Таблица 4).

Таблица 4. Региоселективность реакции нитрования

Условия нитрования

Выход 2-нитро-4-хлортолуола (%)

Выход 3-нитро-4-хлортолуола (%)

HNO3; SO3

55

45

H2SO4; HNO3

65

35

(CH3CO)2О; HNO3

87

13

Похожие статьи




Механизм нитрования ароматических углеводородов - Синтез пара-нитродифенила. Теоретические основы нитрования

Предыдущая | Следующая