Кинетика процесса нитрования - Синтез пара-нитродифенила. Теоретические основы нитрования

Нитрование ароматических углеводородов смесями азотной и серной кислот протекает по ионному механизму. В. В. Марковников указал, что при взаимодействии серной и азотной кислот образуется нитросерная кислота:

HNO3 + H2SO4 HOSO2-ONO2 + H2O

В дальнейшем было установлено (Титов, Инголд, Беннет), что нитросерная кислота в водной среде диссоциирует с образованием нитроний-катиона:

H2O

HOSO2-ONO2 NO2+ + HSO4-

Ионы нитрония образуются и в концентрированной (безводной) азотной кислоте, не содержащей серной кислоты:

2HNO3 NO3H+ + NO3-

NO3H2+ NO2+ + H2O

При добавлении воды к азотной кислоте диссоциация HNO3 c образованием нитроний-катиона NO2+ подавляется почти полностью, концентрация этих ионов становится ничтожно малой.

Серная кислота реагирует не только с азотной кислотой, но и с водой, образуя ион гидроксония H3O+ и бисульфатный анион HSO4-:

H2SO4 + H2O H3O+ + HSO4-

Таким образом, процесс взаимодействия азотной и серной кислот можно выразить следующим уравнением:

HNO3 + 2H2SO4 NO2+ + H3O+ + 2HSO4- (1)

Следовательно, главным активирующим действием серной кислоты является превращение азотной кислоты в наиболее сильное нитрующее средство - нитроний-катион NO2+

В безводной азотной кислоте (без серной кислоты) концентрация иона нитрония составляет около 2% вследствие самодегидратации.

2HNO NO2+ + NO3- + H2O (2)

Существование NO2+ доказано с помощью спектров комбинационного рассеяния (наблюдается интенсивная полоса при 1400 см). В растворах HNO3 + H2SO4; HNO3 + HClO4; HNO3 + HBF4 азотная кислота практически полностью ионизована, были выделены в твердом виде соли катиона нитрония NO2+X- (X = ClO4, HSO4, BF4). Добавление воды к концентрированной азотной кислоте приводит к уменьшению содержания иона NO2+, и при наличии более 5% воды его сигнал в спектре КР исчезает. Реакция нитрования по мере добавления воды замедляется, сохраняя первый порядок по субстрату.

В органических растворителях, таких как CCl4, ацетонитрил, нитрометан, сульфолан, образование катиона NO2+ по уравнению (2) является стадией, определяющей скорость нитрования, вследствие чего реакция имеет нулевой порядок по ароматическому субстрату. Добавки веществ, влияющих на концентрацию NO2+, сказываются на скорости нитрования. Так, введение нитратов или воды, подавляя ионизацию, замедляет нитрование.

В среде концентрированной серной кислоты равновесие целиком сдвинуто вправо (1). Исследование спектроскопическими (КР-, ИК-, УФ - спектроскопия), криоскопическим и кондуктометрическим методами привело к заключению, что полное превращение HNO3 в NO2+ сохраняется при снижении концентрации H2SO4 до 90%; при концентрации H2SO4 82-70% присутствуют только неионизированные молекулы HNO3, при разбавлении H2SO4 ниже 70% появляются анионы NO3-, а ниже 15% присутствуют только ионы NO3-. По данным спектров ЯМР 14N, для 0,5 М раствора HNO3 степень превращения в NO2+ в среде 91,2% H2SO4 составляет 92%, в 88,6% - 54%, в 86,2% - 12%, а в 81% содержание NO2+ ниже предела чувствительности метода.

Нитрование ароматических углеводородов нитроний-катионом протекает как ионно-комплексная реакция. Сначала нитроний катион NO2+ присоединяется к ядру ароматического углеводорода, затем от образовавшегося соединения отрывается протон.

Более подробно этот процесс можно расписать через образование ?- и ?- комплекса. Лимитирующей стадией является образование ?- комплекса, т. е. скорость процесса нитрования определяется скоростью присоединения нитроний-катиона к углеродному атому в молекуле ароматического углеводорода, так как протон отщепляется от этого углеродного атома почти мгновенно. Лишь в отдельных случаях нитрования в пространственно затрудненное положение отмечался значительный первичный кинетический изотопный эффект, обусловленный, очевидно, ускорением обратной реакции на стадии образования ?- комплекса из-за стерических препятствий и именно в таких случаях стадия образования ?- комплекса не является лимитирующей. К таким примерам относятся нитрование антрацена в положение 9 солями нитрония (KH/KD=6,1 в ацетонитриле, 2,6 в нитрометане), нитрование 1,3,5-три (трет-бутил)-2-R-бензолов азотной кислотой в серной кислоте (R=F, NO2, CH3, KH/KD=2,3-3,7). Но в большинстве случаев стадия образования ?- комплекса является определяющей для скорости процесса.

Поэтому уравнение скорости нитрования будет выглядеть так:

WНитр =

K2 >> K1 и K-1, так как отсутствует кинетический изотопный эффект и связывание протона не ускоряет реакцию. Величиной K-1 пренебрегают.

В концентрированной серной кислоте равновесие практически нацело сдвинуто вправо. Тогда кинетическое уравнение можно представить в следующем виде:

Как видно из уравнения, скорость реакции обратно пропорциональна концентрации воды и сульфат иона и прямо зависит от концентрации азотной кислоты. Это хорошо просматривается в условиях проведения реакции нитрования ряда ароматических соединений, содержащих электронодонорные или электроноакцепторные заместители.

Правила ориентации:

    1. Заместители, имеющиеся в бензольном ядре, направляют вновь вступающую группу в определенные положения, т. е. оказывают ориентирующее действие. 2. Все заместители в бензольном кольце делятся на две группы: ориентанты первого рода и ориентанты второго рода.

Ориентанты 1-го рода (орто-пара-ориентанты) направляют последующее замещение преимущественно в орто - и пара-положения. К ним относятся электронодонорные группы (электронные эффекты групп указаны в скобках):

-R (+I); - OH (+M,-I); - OR (+M,-I); - NH2 (+M,-I); - NR2 (+M,-I)

+M-эффект в этих группах сильнее, чем - I-эффект.

Ориентанты 1-го рода повышают электронную плотность в бензольном кольце, особенно на углеродных атомах в орто - и пара-положениях, что благоприятствует взаимодействию с электрофильными реагентами именно этих атомов.

Ориентанты 1-го рода, повышая электронную плотность в бензольном кольце, увеличивают его активность в реакциях электрофильного замещения по сравнению с незамещенным бензолом.

Особое место среди ориентантов 1-го рода занимают галогены, проявляющие электроноакцепторные свойства: - F (+M<-I), - Cl (+M<-I), - Br (+M<-I).

Являясь орто-пара-ориентантами, они замедляют электрофильное замещение. Причина - сильный - I-эффект электроотрицательных атомов галогенов, понижащий электронную плотность в кольце.

Ориентанты 2-го рода (мета-ориентанты) направляют последующее замещение преимущественно в мета-положение. К ним относятся электроноакцепторные группы:

-NO2 (-M, - I); - COOH (-M, - I); - CH=O (-M, - I); - SO3H (-I); - NH3+ (-I); - CCl3 (-I).

Ориентанты 2-го рода уменьшают электронную плотность в бензольном кольце, особенно в орто - и пара-положениях. Поэтому электрофил атакует атомы углерода не в этих положениях, а в мета-положении, где электронная плотность несколько выше.

Все ориентанты 2-го рода, уменьшая в целом электронную плотность в бензольном кольце, снижают его активность в реакциях электрофильного замещения.

Нитрующая способность смеси серной и азотной кислот характеризуется фактором нитрующей активности (Ф. Н.А.):

В этой формуле дробь характеризует степень возрастания концентрации серной кислоты после израсходования всей HNO3 и выделения соответствующего количества H2O:

Таблица 1. Условия реакции нитрования некоторых ароматических соединений ArX

Х

Избыток HNO3 (моль)

Состав нитрующей смеси,%

Температура, 0С

HNO3

H2SO4

H2O

NHCOCH3

0

31

48

21

0 - 5

CH3

0

24

59

17

40

H

0

20

65

15

40-60

Cl

0

18

71

11

60-80

COOC2H5

0,1

18

75

7

80-95

NO2

0,1

18

80

2

90-100

1-CH3,2,4-ди-NO2

0,15

18

82

0

100-120

Где 18 и 63 - молекулярные массы воды и азотной кислоты.

Следовательно, Ф. Н.А. численно равен концентрации отработанной H2SO4 при условии полного использования HNO3. При этом Ф. Н.А., тем более высокое, чем ниже реакционная способность этого соединения. Для каждого процесса нитрования имеется предел Ф. Н.А., ниже которого нитрование практически не идет. Когда азотная кислота почти полностью израсходована на нитрование, фактор нитрующей активности приближается к концентрации серной кислоты в отработанной смеси

Расход азотной кислоты на нитрование определяется стехиометрическими соотношениями; это количество несколько увеличивают с учетом побочных процессов окисления, потерь кислоты и др., а так же для интенсификации процесса и более полного превращения ароматического соединения. Необходимый избыток азотной кислоты сверх расчетного определяют для каждого нитруемого углеводорода опытным путем. Естественно, что степень использования азотной кислоты оказывается в таком случае ниже 100%.

Количество вводимой серной кислоты определяется фактором нитрующей активности Ф. Н.А. В таблице 2 приведены показатели промышленных процессов нитрования некоторых ароматических углеводородов.

Похожие статьи




Кинетика процесса нитрования - Синтез пара-нитродифенила. Теоретические основы нитрования

Предыдущая | Следующая