Сырьевые источники получения метанола, Многочисленные технологические схемы производства метанола - Синтез на основе оксидов углерода и водорода

Таблица 2 - Структура сырья в производстве метанола, %.

Сырье

В мире

Беларусь и Россия

Природный газ

73,8

70,7

Нефть и нефтепродукты

24,4

4,0

Отходы других производств

-

17,4

Каменный уголь

1,8

7,9

При современной тенденции роста цен на нефть и нефтепродукты перспективы имеет переработка каменного угля.

Так, например, по технологической схеме "Мобиль" осуществляется следующий цикл:

Уголь > газификация > метанол > синтетический бензин.

Процесс протекает в две стадии: дегидратация метанола до диметилового эфира и, далее, до алкена:

2СН3ОН > СН3ОСН3 + Н2О > СН2=СН2 + 2Н2О

И последующие превращения алкенов в парафины, циклопарафины и ароматические углеводороды. В качестве катализаторов используются синтетические цеолиты [2].

Многочисленные технологические схемы производства метанола

Технологические схемы производства метанола включают три обязательных стадии:

очистка синтез-газа от сернистых соединений, карбонилов железа и частиц компрессорного масла,

собственно синтез,

очистка и ректификация, метанола-сырца.

В остальном технологические схемы различаются аппаратурным оформлением и параметрами процесса. Все они могут быть разделены на три группы.

    1. Синтез при высоком давлении Проводится на цинк-хромовых катализаторах при температуре 370--420°С и давлении 20--35 МПа. В настоящее время этот процесс устарел и вытесняется синтезом при низком давлении. 2. Синтез при низком давлении Проводится на цинк-медь-алюминиевых или цинк-медь-хромовых катализаторах при температуре 250--300 °С и давлении 5--10 МПа. Использование в этом методе низкотемпературных катализаторов, активных при более низких давлениях, позволяет снизить энергозатраты на сжатие газа и уменьшить степень рециркуляции непрореагировавшего сырья, то есть увеличить степень его конверсии. Однако, в этом методе требуется особо тонкая очистка исходного газа от соединений, отравляющих катализатор. 3. Синтез в трехфазной системе "газ--Жидкость--Твердый катализатор", Проводимый в суспензии из тонкодисперсного катализатора и инертной жидкости, через которую барботируется синтез-газ. Этот процесс отличается от первых двух, которые проводятся в двухфазной системе "газ - твердый катализатор". В трехфазной системе может бытъ обеспечено более благоприятное состояние равновесия системы, что позволяет повысить равновесную концентрацию метанола в реакционной смеси до 15% вместо 5% при использовании двухфазных систем, доведя степень конверсии оксида углерода (II) до 35% вместо 15% и еще более уменьшить рециркуляцию газа и энергозатраты.

Возросшая потребность в метаноле вызвала разработку новых перспективных методов его производства. Помимо описанного выше трехфазного синтеза к ним относятся:

    - синтез метанола прямым окислением метана воздухом на цинк-никель-кадмиевом катализаторе, позволяющий использовать в качестве сырья природный газ непосредственно из скважин; - совместное производство из синтез-газа метанола и спиртов С2--С4 в виде так называемой "спиртовой композиции", используемой как добавка к моторному топливу; - совместное производство метанола и аммиака на основе конвертированного газа по малоотходным энерготехнологическим схемам, обеспечивающим рациональное и комплексное использование сырья.

Несмотря на то, что доля метанола используемого на производство моторного топлива в настоящее время еще невелика (таблица 2), использование его для топливно-энергетических целей стало весьма перспективным. Это обусловлено возможностью получения метанола из любого углеродсодержащего сырья и неограниченными запасами его, что позволяет использовать метанол в качестве полупродукта в производстве синтетического моторного топлива.

Реакция синтеза метанола из синтез-газа представляет гетерогенно-каталитическую обратимую экзотермическую реакцию, протекающую по уравнению:

, где ДН1=90,7 кДж (а)

Тепловой эффект реакции возрастает с повышением температуры и давления и для условий синтеза составляет 110,8 кДж.

Параллельно основной протекают и побочные реакции:

,где ДН2=209 кДж (б)

,где ДН3=252 кДж (в)

,где ДН4=8,4 кДж (г)

А также продукционная реакция образования метанола из содержащегося в синтез-газе диоксида углерода:

,где ДН5=49,5 кДж (д)

Кроме этого, образовавшийся метанол может подвергаться вторичным превращениям по реакциям:

Реакции (а--д) протекают с выделением тепла и уменьшением объема, но различаются величиной теплового эффекта и степенью контракции. Поэтому, хотя для всех этих реакций степень превращения возрастает с увеличением давления и понижением температуры, в наибольшей степени повышение давления влияет на равновесие основной реакции синтеза (а), для которой степень контракции максимальна и составляет 3:1. В то же время, понижение температуры ниже некоторого предела нецелесообразно, так как при низких температурах скорость процесса синтеза настолько мала, что не существует катализатора, который в этих условиях мог бы существенно ускорить достижение высокой степени превращения сырья.

Вследствие противоречивого влияния температуры на скорость процесса и равновесную степень превращения выход метанола за один проход реакционной смеси через реактор не превышает 20%, что делает необходимой организацию циркуляционной технологической схемы синтеза.

Температура процесса зависит главным образом от активности применяемого катализатора и варьируется в пределах от 250 до 420°С. В соответствии с температурным режимом работы катализаторы синтеза метанола подразделяются на высокотемпературные и низкотемпературные. Высокотемпературные катализаторы, получаемые методом соосаждения оксидов цинка и хрома, например, катализатор СМС-4 состава 2,5 ZnOZnCr2O4, термостойки, мало чувствительны к каталитическим ядам, причем отравляются обратимо, имеют высокую селективность, но активны только при высоких температурах (370--420°С) и давлениях (20--35 МПа). Низкотемпературные катализаторы, например, цинк-медь-алюминиевый состава ZnOCuOAl2O3 или цинк-медь-хромовый состава ZnО-СиО-Сг2О3, менее термостойки, необратимо отравляются каталитическими ядами, но проявляют высокую активность при относительно низких температурах (250--300°С) и давлениях (5--10 МПа), что более экономично.

Оба типа катализаторов проявляют свою активность и селективность в узком интервале температур 20--30°С. Исходя из температурного режима работы катализаторов выбирается давление синтеза, которое тем больше, чем выше температура синтеза.

Состав исходной газовой смеси оказывает существенное влияние как на степень превращения оксидов углерода, так и на равновесную концентрацию метанола в продуктах синтеза. С увеличением объемного отношения Н2:СО в синтез-газе степень превращения оксидов углерода возрастает, причем оксида углерода (IV) более интенсивно (рисунок 2). Из рисунка также следует, что оптимальный состав газовой смеси отвечает отношению Н2:СО=5:1. Равновесная концентрация метанола в продуктах реакции проходит через максимум, который отвечает стехиометрическому отношению Н2:СО в исходной газовой смеси (рисунок 2).

Скорость образования метанола является функцией многих переменных:

Где: к -- константа скорости реакции синтеза метанола; Ск --концентрация компонентов исходной газовой смеси, Ф -- время контакта, Т - температура, Р -- давление. оксид углерод водород метанол

Образующиеся при синтезе побочные продукты оказывают существенное влияние на стадию хемосорбции и на кинетику образования метанола в целом. Поэтому, для реакции синтеза метанола предложено большое количество различных кинетических уравнений, выведенных на основе выдвинутых их авторами предположений о механизме реакции. Независимо от этого, время контактирования для реальных условий процесса синтеза может быть рассчитано по формуле [2]:

Где: Р -- давление, 1 МПа; Т -- температура, К; W -- объемная скорость газа при нормальных условиях, с-1.

Согласно (рисунок 1) оптимальными параметрами процесса являются объемная скорость газа - 40 000 ч-1; температура 370 - 380 оС при давлении 30 МПа. При этих значениях производительность катализатора составляет около 3,15 кг/(м3-ч). Концентрация метанола - 40 % (рисунок 1). Степень превращения СО за один проход - 15%. Согласно (1) максимальная производительность наблюдается при молярном отношении Н2:СО=4:1, на практике поддерживают отношение 2,15 - 2,25.

Технологический процесс получения метанола из оксида углерода и водорода включает ряд операций, обязательных для любой технологической схемы синтеза. Газ предварительно очищается от карбонила железа, сернистых соединений, подогревается до температуры начала реакции и поступает в реактор синтеза метанола. По выходе из зоны катализа из газов выделяется образовавшийся метанол, что достигается охлаждением смеси, которая затем сжимается до давления синтеза и возвращается в процесс.

Технологические схемы различаются аппаратурным оформлением главным образом стадии синтеза, включающей основной аппарат колонну синтеза и теплообменник. На рисунке 1 представлена схема агрегата синтеза высокого давления с так называемой совмещенной насадкой колонны.

Сжатый до 32 МПа синтез-газ проходит очистку в масляном фильтре 1 и в угольном фильтре 2, После чего смешивается с циркуляционным газом. Смешанный газ, пройдя кольцевой зазор между катализаторной коробкой и корпусом колонны 3, Поступает в межтрубное пространство теплообменника, расположенного в нижней части колонны (рисунок 2). В теплообменнике газ нагревается до 330--340 °С и по центральной трубе, в которой размещен электроподогреватель, поступает в верхнюю часть колонны и проходит последовательно пять слоев катализатора. После каждого слоя катализатора, кроме последнего, в колонну вводят определенное количество холодного циркуляционного газа для поддержания необходимой температуры. После пятого слоя катализатора газ направляется в теплообменник, где охлаждается с 300--385 до 130 °С, а затем в холодильник-конденсатор типа "труба в трубе" 4 (рисунок 1). Здесь газ охлаждается до 30-- 35 °С и продукты синтеза конденсируются. Метанол-сырец отделяют в сепараторе 5, направляют в сборник 7 и выводят на ректификацию. Газ проходит второй сепаратор 5 для выделения капель метанола, компримируется до давления синтеза турбоциркуляционным компрессором 6 И возвращается на синтез. Продувочные газы выводят перед компрессором и вместе с танковыми газами используют в качестве топлива.

Размещение теплообменника внутри корпуса колонны значительно снижает теплопотери в окружающую среду, что улучшает условия автотермичной работы агрегата, исключает наличие горячих трубопроводов, т. е. делает эксплуатацию более безопасной и снижает общие капиталовложения. Кроме того, за счет сокращения длины трубопроводов снижается сопротивление системы, что позволяет использовать турбоциркуляционные компрессоры вместо поршневых.

схема синтеза метанола

Рисунок 1 - Схема синтеза метанола:

    1 - масляный фильтр; 2 - угольный фильтр; 3 - колонна синтеза; 4 - холодильник-конденсатор; 5 - сепараторы; 6 - компрессоры; 7 - сборник.

Основным аппаратом производства метилового спирта из окиси углерода и водорода является колонна синтеза. Колонны обычно изготавливают из высоколегированной стали, хорошо сопротивляющейся коррозионному действию Н2 и СО, или из низколегированных конструкционных сталей с футеровкой стенок медью или ее сплавами. Производительность колонны синтеза метанола в большой степени зависит от конструкции насадки. В промышленности применяются колонны с насадками разнообразных конструкций.

На рисунке 2 схематически изображена колонна синтеза с полочной насадкой (внутренний диаметр колонны 800 мм, Высота 12 м, толщина стенок корпуса 90 мм). В верхней части колонны размещается катализаторная коробка 1 с полками 3 Для катализатора и электроподогревателем для подогрева газа в пусковой период, в нижней части колонны имеется теплообменник 4. Основной поток синтез-газа вводится сверху и проходит вниз по кольцевому пространству между корпусом колонны и корпусом катализаторной коробки. Далее газ поступает в межтрубное пространство теплообменника 4 И подогревается за счет тепла продуктов реакции, проходящих по трубкам. В межтрубном пространстве теплообменника имеются перегородки, направляющие часть газового потока поперек труб, благодаря чему значительно увеличивается коэффициент теплоотдачи.

Из теплообменники 4 Газ через центральную трубу 2 Поступает в катализаторное пространство, где протекает реакция образования метилового спирта. Продукты реакции проходят по трубкам теплообменники, охлаждаясь поступающим свежим газом, и через тройник в нижней крышке выводятся из колонны синтеза. Для предотвращения перегрева катализаторной массы в колонну подают холодный ("байпасный") газ. Для этого на каждую полку аппарата подведены трубки, изогнутые но окружности и имеющие мелкие отверстия, через которые холодный газ поступает в контактную массу. Количество поступающего холодного газа регулируется клапанами, установленными на подводящих трубках.

колонна синтеза метилового спирта

Рисунок 2 - Колонна синтеза метилового спирта:

1 - корпус катализаторной коробки; 2 - труб для электроподогревателя; 3 - полки катализатора; 4 - теплообменник;5 - Трубки подвода байпасного газа.

Похожие статьи




Сырьевые источники получения метанола, Многочисленные технологические схемы производства метанола - Синтез на основе оксидов углерода и водорода

Предыдущая | Следующая