Секвенирование через нанопоры - Секвенирование ДНК

Возможность использовать матрицы с нанопорами для быстрого секвенирования ДНК исследуется уже более 15 лет в научных центрах Европы и США. Нанопоры представляют собой наноотверстия, которые могут быть биологическими, например порообразующий белок в мембране как липидный бислой, или твердотельными (из таких синтетических мате - риалов, как нитрид кремния или графен). При секвенировании через нанопоры используется физическое различие между нуклеотидными основаниями для их идентификации в молекуле ДНК. Отрицательно заряженный одноцепочечный фрагмент ДНК длиной в несколько тысяч нуклеотидов протягивают через пору в мембране диаметром 2-5 нм, регистрируя изменение электропроводности нанопоры при помощи электродов по мере поочередного прохождения через нее нуклеотидов. Каждому типу основания соответствует свое изменение электропроводности из-за различия между ними по размерам, поэтому они закрывают пору в большей или меньшей степени и на разную продолжительность. Соответственно этому изменяется и электропроводность. Однако данная технология имеет, по крайней мере, два серьезных технических препятствия для реализации: отсутствие надежного подхода к контролю продвижения ДНК через нанопоры и технические трудности в создании достаточно малых датчиков. В одном из вариантов для замедления прохождения фрагмента ДНК через нанопоры на его конец крепят магнитную микросферу. Чтобы тянуть молекулу за микросферу, используют магнит, включенное электрическое поле в то же время тянет ДНК в противоположную сторону, затягивая ее в отверстие нанопоры. Таким образом, скорость движения ДНК через нанопоры определяется балансом этих сил. При этом чтение последовательности нуклеотидов происходит со скоростью в сотни тысяч раз быстрее, по сравнению со стандартными методами секвенирования. Секвенирование генома человека займет в этом случае всего 20 ч, поскольку многократной амплификации матрицы не понадобится. Другой предложенный фирмой "IBM" вариант технологии - "ДНК Транзистор", использует многослойную (диэлектрик-металл) мембрану. Изменение напряжения между адресными слоями металла в мембране создает электрические поля внутри нанопор, циклически включая и выключая которые можно двигать ДНК через нанопоры с шагом в один нуклеотид за цикл, улавливая датчиками разницу между возможными четырьмя вариантами оснований. Существуют также другие варианты реализации секвенирования ДНК через нанопоры, но в настоящее время научно-исследовательские разработки нанопорных секвенаторов находятся на опытно - конструкторской стадии. Недавно компания "Oxford Nanopore Technologies" заявила о том, что практически доработала технологию секвенирования на основе нанопор до ее коммерческого аппаратного воплощения. Выход первых нанопорных секвенаторов данной компании под названием "GridION" и "MinION" может состояться уже в 2015 г. Уровень ошибок данной технологии составит 0,1-1 %, а длина читаемых единичных фрагментов ДНК достигнет многих десятков тысяч нуклеотидов [22]. Это будет очередным прорывом в области секвенирования ДНК, так как время, затрачиваемое на данный процесс, и его стоимость уменьшатся на порядок. На сегодняшний день из практически реализованных методов секвенирования третьего поколения функционирует только платформа "SMRT" (Pacific Biosciences). Вероятно, через несколько лет метод секвенирования ДНК через нанопоры станет доминирующим и вытеснит практически используемые методы второго поколения.

Похожие статьи




Секвенирование через нанопоры - Секвенирование ДНК

Предыдущая | Следующая