Коэффициент детерминации - Математическое описание связи: регрессия, корреляция

Предположим, что экономические предпосылки и анализ расположения точек на корреляционном поле позволил нам выдвинуть гипотезу о том, что зависимость результирующего признака у от фактора х может быть описана следующей моделью:

.

Причем, как не раз мы уже отмечали коэффициенты 0 И 1 в этом уравнении неизвестны. Используя МНК, мы можем найти оценки этих коэффициентов в0 и в1 и записать следующее выражение для у:

.

На приведенном рисунке (Рис.4) изображены фактические значения переменной у, график гипотетической функции регрессии (которая, вообще говоря, нам неизвестна!) и график эмпирической функции регрессии, коэффициенты которой найдены из условия минимума суммы квадратов ошибок.

графики гипотетической и эмпирической функций регрессии

Рис.4. Графики гипотетической и эмпирической функций регрессии.

Исходя из логики наших действий, возникают два вопроса:

    ?Можно ли с той или иной вероятностью найти подтверждение, что вид функциональной зависимости (речь пока идет только о линейной функции) выбран корректно. ?Насколько хорошо, со статистической точки зрения, оценки неизвестных параметров, полученные по МНК, приближают неизвестные коэффициенты.

Для ответов на поставленные вопросы нам понадобится, в частности, понятие коэффициента детерминации. Перед тем как ввести это понятие рассмотрим следующую сумму:

.

Покажем, что ее можно представить в виде:

=+.

Действительно,

=

=. (1)

Через обозначена функция регрессии, полученная по МНК: .

Покажем, что последнее слагаемое в (1) равно нулю, для этого запишем его в виде:

- .

Рассмотрим слагаемое

=.

В силу равенства (2), можно утверждать, что оно равно 0. Преобразуем теперь первое слагаемое:

==

=+.

Оба слагаемых равны нулю в силу равенств (2) и (3).

Таким образом, мы показали, что имеет место, следующее представление для рассматриваемой суммы:

=. (2)

Величину еI равную:

Будем называть остатком. Следовательно, первое слагаемое в правой части (2) есть сумма квадратов остатков:

.

Ее называют остаточной суммой квадратов и обозначают RSS (residual sum of squares).

Вторая сумма это сумма квадратов отклонений точек, расположенных на регрессионной прямой от прямой у =. Эту сумму называют суммой квадратов отклонений, объясненной регрессией ЕSS (explained sum of squares).

В левой части равенства (2) находится сумма квадратов отклонений фактических значений переменной у от прямой у =. Такую сумму называют полной суммой квадратов и обозначают TSS (total sum of squares).

Таким образом, полная сумма квадратов TSS разбилась на две составляющие:

TSS= RSS+ ESS. (3)

    ? ESS - сумму квадратов, обусловленных влиянием основного фактора х; ? RSS - сумму квадратов, обусловленных влиянием других, в том числе и случайных факторов.

Замечание 1. Следует иметь в виду, что в литературе по эконометрике, в частности в [9], эту же систему обозначений используют с точностью до наоборот, давая ей другое объяснение. Сумму, которая выше обозначена как ЕSS обозначают через RSS и расшифровывают так: regression sum of squares. И наоборот, сумму, обозначенную нами как RSS называют ЕSS: error sum of squares. Мы будем придерживаться введенной выше терминологии. ^

Замечание 2.Рассмотрим два частных случая. Предположим, что x не оказывает никакого влияния на y, тогда выборочное условное среднее совпадает с выборочным средним, в такой ситуации ЕSS =0 и

TSS= RSS.

В том случае, когда на зависимую переменную у не оказывает влияния никакие другие факторы, кроме х, сумма RSS будет равняться нулю и будет выполняться следующее равенство:

TSS= ESS.

В общем же случае, если оценки параметров функции регрессии найдены по МНК, всегда будет иметь место равенство (3).^

Определение 1. Парным коэффициентом детерминации (выборочным) называют отношение:

. (4)

Говорят, что "коэффициент детерминации показывает, какая доля дисперсии величины y определяется (детерминируется) изменчивостью (дисперсией) соответствующей функции регрессии y от x" [1].

Поясним сказанное. Для этого вернемся к равенству (2) и разделим обе части равенства на n, получим:

=.

Или:

.

Тогда выражение для парного коэффициента детерминации можно представить в виде:

. (5)

Следует отметить, что введенный нами парный коэффициент детерминации также относится к выборочным числовым характеристикам и рассчитывается по эмпирическим данным. Теоретический коэффициент детерминации будем обозначать RXy.

Рассмотрим, в каком диапазоне изменяется значение коэффициента детерминации. Очевидно, что эта величина всегда неотрицательна. Найдем верхнюю границу. Из равенства (3) следует следующее равенство:

.

Следовательно,

.

Отсюда очевидно, что в силу того, что наименьшее значение RSS =0, наибольшее значение коэффициента детерминации равно 1. Таким образом,

.

Отметим, что значение коэффициента детерминации тем ближе к 1, чем меньше остаточная сумма квадратов. В этом случае говорят, что уравнение регрессии статистически значимо и фактор х оказывает сильное воздействие на результирующий признак у (последний тезис справедлив только для модели парной линейной регрессии!).

Покажем, как связаны коэффициент парной детерминации с выборочным коэффициентом корреляции, чтобы аргументировать последнее утверждение.

.

Подставим это выражение в числитель формулы (5):

.

Следовательно, в случае парной линейной регрессии, коэффициент детерминации равен квадрату выборочного коэффициента корреляции:

. (6)

Замечание 1. Из теории вероятностей известно следующее свойство коэффициента корреляции. Коэффициент корреляции двух случайных величин равен 1 или -1 тогда и только тогда, когда случайные величины связаны между собой линейно, т. е. у = ах + в. Классификация силы связи двух случайных величин в зависимости от величины коэффициента корреляции (теоретического!) может производиться следующим образом.

Если то связь между случайными величинами классифицируют как слабую; если то силу связи между двумя случайными величинами классифицируют как среднюю и, наконец, если, то говорят, что имеет место сильная стохастическая зависимость. Причем, если коэффициент корреляции положительный, то связь классифицируют как прямую, то есть значение обеих случайных величин увеличиваются, или уменьшаются одновременно. Отрицательное значение коэффициента корреляции говорит об обратной связи, то есть, например, увеличение значений одной случайной величины ведет к уменьшению значений другой. Следует иметь в виду, что использование выборочного коэффициента корреляции для подобной классификации, требует вдумчивого подхода. Эта характеристика является по своей сути случайной величиной и нельзя по ее значению делать категоричные выводы, подобные тем, которые производят, ориентируясь на. Все суждения, должны носить уже в этом случае более осторожный характер.

Тем не менее, и выборочный коэффициент корреляции и парный коэффициент детерминации служат хорошим индикатором, позволяющим нам делать предположение о том, что зависимость между х и у имеет место, и она носит вид линейной функциональной зависимости.

Вернемся к парному коэффициенту детерминации. Если модуль выборочного коэффициента корреляции близок к 1, то из формулы (6) следует, что близок к 1 и. Таким образом, близость коэффициента детерминации или абсолютной величины выборочного коэффициента корреляции к 1, служит еще одним основанием в поддержку предположения, что функция регрессии линейна.

При анализе модели парной линейной регрессии будем делать следующие предварительные выводы о качестве модели.

    ?Если [0; 0,09], то будем считать, что использование регрессионной модели для аппроксимации зависимости между у и х статистически необоснованно. ?Если (0,09; 0,49], то использование регрессионной модели возможно, но после оценивания параметров, модель подлежит дальнейшему многостороннему статистическому анализу. ?Если (0,49; 1], то будем считать, что у нас есть основания для использования регрессионной модели, при анализе поведения переменной у.

Пример 1. Вычислим коэффициент детерминации и сделаем предварительный вывод о качестве аппроксимации доходности акций компании Glenwood City Properties моделью линейной регрессии (пример 1).

Решение. Так как значение выборочного коэффициента корреляции нам уже известно, то для нахождения воспользуемся формулой (6):

=(0,593595)2.

И значение, и значение, говорят о слабой зависимости между доходностью рыночного индекса и доходностью акций указанной компании. Такая слабая зависимость обычно характерна для компаний с низкой рыночной капитализацией, которые не участвуют в формировании рыночного индекса. ^

Так, например, индекс S&;P 500 (Standard &; Poors Stock Price Index) представляет средневзвешенную величину курсов акций 500 наиболее крупных компаний. Наиболее часто цитируемым рыночным индексом является индекс Доу Джонса (DJIA), основанный на показателях всего 30 акций. Впервые этот индекс был вычислен в 1884 как среднеарифметическое 11 акций, с 1928 для расчета индекса используется 30 ценных бумаг. Состав бумаг, входящих в индекс, периодически меняется.

Похожие статьи




Коэффициент детерминации - Математическое описание связи: регрессия, корреляция

Предыдущая | Следующая