Аналитический обзор - Процесс производства этилбензола: сырье, способы получения и использование

Алкилирование ? это процесс введения алкильных групп в молекулы органических веществ и некоторых неорганических веществ. Процесс алкилирования часто является промежуточной стадией в производстве мономеров, моющих веществ и т. д. [2].

Вещества, которые участвуют в процессе алкилирования, называются алкилирующими агентами. Все алкилирующие агенты по типу связей, разрывающихся в них при алкилировании, делятся на следующие группы:

    ? ненасыщенные соединения (олефины и ацетилен); ? хлорпроизводные с неподвижным атомом хлора; ? спирты, простые и сложные эфиры (оксиды олефинов) [1].

Олефины (этилен, бутилен, пропилен и т. д.) имеют первостепенное значение в качестве алкилирующих агентов. В виду дешевизны ими стараются пользоваться во всех случаях, где это возможно. Основное применение они нашли для С-алкилирования парафинов ароматических соединений. Алкилирование олефинами в большинстве случаев протекает по ионному механизму через промежуточное образование ионов аргония и катализируется протонными и апротонными кислотами.

Реакционная способность олефинов при реакции такого типа определяет их склонность к образованию ионов карбония

RCH = СH2 + H > R + СНСН3.

Это означает, что удлинение и разветвление цепи атомов углерода значительно повышает реакционную способность олефина к алкилированию.

В ряде случаев алкилирование олефинами протекает под влиянием инициаторов радикально-цепных реакций, освещения или высокой температуры. Здесь промежуточными активными частицами являются свободные радикалы и реакционная способность разных олефинов при таких реакциях значительно снижается.

Хлорпроизводные являются алкилирующими агентами наиболее широкого диапазона действий. Применять их рационально для тех процессов, в которых их невозможно заменить олефинами или когда хлорпроизводные дешевле и доступнее олефинов. Алкилирующее действие хлорпроизводных проявляется в трех различных типах взаимодействия:

    ? электрофильного; ? нуклеофильного; ? свободно-радикального.

Механизм электрофильного замещения характерен в основном для алкилирования по атому углерода, но в отличие от олефинов реакции катализируются только апротонными кислотами. Процесс идет с промежуточным образованием ионов аргония, в связи с чем, реакционная способность хлористых алкилов зависит от поляризации связи С-Сl и повышается при удлинении цепи.

При нуклеофильном замещении атомов Сl, характерном для алкилирования S и N, механизм аналогичен гидролизу хлорпроизводных, причем реакция протекает в отсутствии катализаторов

RCl + NH3 > RN + H3 + Cl > RNH2 + HCl.

Спиртами, оксидами и простыми эфирами алкилируют в присутствии кислых катализаторов. Процесс идет с разрывом таких связей, как С-О, С-N, С-S. Спирты применяют для алкилирования только в тех случаях, когда они дешевле и доступнее хлорпроизводных. Нерационально использовать спирты с катализатором хлоридом алюминия, так как при алкилировании спиртами катализатор разлагается, а протонные кислоты разбавляются образовавшейся водой. В этих случаях происходит дезактивирование катализатора, что обуславливает его большой расход.

Алкилирование олефинами применяется в промышленности в основном для получения компонентов моторного топлива с высокой антидистанционной способностью. Каталитическое алкилирование протекает при обычной температуре или даже при охлаждении до 0 °С и давлении, близком к атмосферному (кроме этилена) [1].

Влияние строения ароматических соединений при реакциях алкилирования в общем такое же, как при других процессах электрофильного замещения ароматического ядра, но имеет свои особенности. Реакция алкилирования отличается низкой чувствительностью к электронно-донорным заместителям в ядре. Правила ориентации при алкилировании, в общем, подобны другим реакциям электрофильного замещения, но строение продуктов может существенно изменяться в зависимости от катализатора и условий реакции. Так электронно-донорные заместители и атомы галогенов направляются преимущественно в пара - и орта - положения. Однако, в более жестких условиях при катализаторе хлориде алюминия происходит изомеризация гомологов бензола с внутримолекулярной миграцией алкильных групп и образование равновесных смесей, в которых преобладают термодинамически более стабильные изомеры.

Алкилирование ароматических углеводородов представляет собой сложный многостадийный процесс, включающий взаимосвязанные реакции алкилирования, изомеризации, полимеризации и др. В качестве катализаторов могут использоваться как протонные кислоты, так и кислоты Льюиса. Протонные кислоты широко применяются при алкилировании бензола олефинами и спиртами, причем их активность падает в ряду

HF > H2SO4 > H3PO4.

При алкилировании ароматических соединений в присутствии любых катализаторов происходит последовательное замещение атомов водорода с образованием смеси продуктов разной степени алкилирования. При умеренной температуре каждая стадия практически не обратима.

С6Н6 + С2Н4 > С6Н5С2Н5 + С2Н4 > С6Н4(С2H5)2 + С2Н4 > С6Н3(С2H5)3 + С2Н4 > С6Н2(С2H5)4 + С2Н4 > С6Н(С2H5)5 + С2Н4 > С6(С2H5)6.

На хлориде алюминия и в жестких условиях происходит обратная реакция переалкилирования с межмолекулярной миграцией алкильных групп

C6H4(C2H5)2 + C6H6 > 2C6H5C2H5.

Следовательно, в процессе на хлориде алюминия может установиться равновесие, что необходимо учитывать при выборе условий процесса оптимального мольного соотношения реагентов. На протонных катализаторах состав продуктов определяется кинетикой процесса, а на хлориде алюминия и в жестких условиях - равновесием [2].

Похожие статьи




Аналитический обзор - Процесс производства этилбензола: сырье, способы получения и использование

Предыдущая | Следующая