Выбор типа регулятора - Автоматические регуляторы

Задача проектировщика состоит в выборе такого типа регулятора, который при минимальной стоимости и максимальной надежности обеспечивал бы заданное качество регулирования.

Для того чтобы выбрать тип регулятора и определить его настройки, необходимо знать:

    - Статические и динамические характеристики объекта управления. - Требования к качеству процесса регулирования. - Показатели качества регулирования для серийных регуляторов. - Характер возмущений, действующих на процесс регулирования.

Выбор типа регулятора обычно начинается с простейших двухпозиционных регуляторов и может заканчиваться самонастраивающимися микропроцессорными регуляторами.

Рассмотрим показатели качества серийных регуляторов. В качестве серийных предполагаются непрерывные регуляторы, реализующие законы управления И, П, ПИ и ПИД.

Теоретически, с усложнением закона регулирования качество работы системы улучшается. Известно, что на динамику регулирования наибольшее влияние оказывает величина отношения запаздывания к постоянной времени объекта с. Эффективность компенсации ступенчатого возмущения регулятором достаточно точно может характеризоваться величиной динамического коэффициента регулирования R D , а быстродействие -- величиной времени регулирования. Теоретически, в системе с запаздыванием минимальное время регулирования t Pvin =2/.

Минимально возможное время регулирования для различных типов регуляторов при оптимальной их настройке определяется таблицей 1.

Таблица 1

Закон регулирования

П

ПИ

ПИД

T P / ,где t p - время регулирования, - запаздывание в объекте

6,5

12

7

Руководствуясь таблицей, можно утверждать, что наибольшее быстродействие обеспечивает закон управления П. Однако, если коэффициент усиления П-регулятора KP мал (чаще всего это наблюдается в системах с запаздыванием), то такой регулятор не обеспечивает высокой точности регулирования, так как в этом случае велика величина статической ошибки. Если KP имеет величину равную 10 и более, то П-регулятор приемлем, а если KP<10 то требуется введение в закон управления интегральной составляющей.

Наиболее распространенным на практик является ПИ-регулятор, который обладает следующими достоинствами:

    1. Обеспечивает нулевую статическую ошибку регулирования. 2. Достаточно прост в настройке, так как настраиваются только два параметра, а именно коэффициент усиления K P и постоянная интегрирования T I . В таком регуляторе имеется возможность оптимизации K P /T I >max, что обеспечивает управление с минимально возможной среднеквадратичной ошибкой регулирования. 3. Обладает малой чувствительностью к шумам в канале измерения (в отличие от ПИД-регулятора).

Для наиболее ответственных контуров можно рекомендовать использование ПИД-регулятора, обеспечивающего наиболее высокое быстродействие в системе. Однако следует учитывать, что это условие выполняется только при его оптимальных настройках (настраиваются три параметра). С увеличением запаздывания в системе резко возрастают отрицательные фазовые сдвиги, что снижает эффект действия дифференциальной составляющей регулятора. Поэтому качество работы ПИД-регулятора для систем с большим запаздыванием становится сравнимо с качеством работы ПИ-регулятора. Кроме этого, наличие шумов в канале измерения в системе с ПИД-регулятором приводит к значительным случайным колебаниям управляющего сигнала регулятора, что увеличивает дисперсию ошибки регулирования. Таким образом, ПИД-регулятор следует выбирать для систем регулирования с относительно малым уровнем шумов и величиной запаздывания в объекте управления. Примерами таких систем являются системы регулирования температуры.

При выборе типа регулятора рекомендуется ориентироваться на величину отношения запаздывания к постоянной времени в объекте /T. Если /T< 0,2, то можно выбрать релейный, непрерывный или цифровой регуляторы. Если 0,2 < /T< 1, то должен быть выбран непрерывный или цифровой, ПИ или ПИД-регулятор. Если /T >1, то выбирают специальный цифровой регулятор с упредителем, который компенсирует запаздывание в контуре управления. Однако этот же регулятор рекомендуется применять и при меньших отношениях /T.

Формульный метод определения настроек регулятора

Метод используется для быстрой приближенной оценки значений параметров настройки регулятора для трех видов оптимальных типовых процессов регулирования.

Метод применим как для статических объектов с самовыравниванием (таблица 2), так и для объектов без самовыравнивания (таблица 3).

Примечание:T, ,K Оу -- постоянная времени, запаздывание и коэффициент усиления объекта.

В этих формулах предполагается, что настраивается регулятор с зависимыми настройками, передаточная функция которого имеет вид:

Где: K P -- коэффициент усиления регулятора;

T I --время изодрома (постоянная интегрирования регулятора);

T D --время предварения (постоянная дифференцирования).

Расчет настроек по частотным характеристикам объекта

Существует специальная аппаратура для экспериментального определения амплитуднофазовой характеристики (АФХ) объекта управления: Эту характеристику можно использовать для расчета настроек ПИ-регулятора, гд главным критерием является обеспечение заданных запасов устойчивости в системе.

Запасы устойчивости удобно характеризовать показателем колебательности системы M, величина которого в системе с ПИ-регулятором совпадает с максимумом амплитудно-частотной характеристики замкнутой системы. Для того чтобы этот максимум не превышал заданной величины, АФХ разомкнутой системы не должна заходить внутрь окружности с центром P 0 и радиусом R, где

Можно доказать, что оптимальными по минимуму среднеквадратичной ошибки регулирования настройками будут такие, при которых система с показателем колебательности MM 1 будет иметь наибольший коэффициент при интегральной составляющей, чему соответствует условие K P /T I >min.

В связи с этим расчет оптимальных настроек состоит из двух этапов:

    1. Нахождение в плоскости параметров K P и T I , границы области, в которой система обладает заданным показателем колебательности M 1 . 2. Определением на границе области точки, удовлетворяющей требованию K P /T I .

Расчет настроек по частотным характеристикам объекта. Методика расчета настроек ПИ регулятора по АФХ объекта

    1. Строится семейство амплитудно-фазовых характеристик разомкнутой системы при K P =1 и различных значениях T Ij (5 -6 значений). 2. Задаются значения показателя колебательности M из диапазона 1,55 M 2,3 (рекомендуется М=1,6). Из начала координат проводят прямую OE под углом =arcsin(1/M 1 ), где M 1 -- выбранное значение показателя колебательности. 3. Строится семейство окружностей, касающихся АФХ Oj и прямой OE под углом, причем центр окружностей все время лежит на отрицательной действительной оси. В результате построения определяются радиусы этих окружностей R J . 4. Для каждой окружности вычисляют предельное значение K p 5. По значениям K Pj и K Ij строят границу области заданного показателя колебательности. 6. На этой границе определяют точку, для которой отношение K P /T i максимально.

Похожие статьи




Выбор типа регулятора - Автоматические регуляторы

Предыдущая | Следующая