Способы улучшения качества дизельного топлива - Сравнительный анализ методов обессеривания

Специальные присадки

Понижение содержания серы в дизельном топливе, как правило, приводит к уменьшению его смазывающих свойств, поэтому для дизельных топлив с ультранизким содержанием серы, обязательным условием является наличие присадок не причиняющие вреда здоровью человека, окружающей среде, жизни и здоровью животных и растений.

В последнее время резко увеличивается потребность в дизельном топливе, поэтому производители всего мира предлагают широкий ассортимент различных присадок.

В настоящее время для дизельного топлива самыми популярными присадками являются: присадка-антигель, противоизносные присадка, цетаноповышающие присадки, депрессорно-диспергирующие присадки.

Присадка антигель добавляется, как в летнее дизельное топливо, так и в зимнее, чтобы повысить его качественные характеристики. Именно этот вид присадки помогает справиться с главной причиной помутнения дизельного топлива при снижении температуры ниже допустимого порога - кристаллизацией парафина. У этого вида присадок две основные функции:

    1)Убрать воду из топлива; 2)Повысить порог замерзания дизельного топлива.

При значительном понижении температуры, парафины собираются в агломераты. Фильтр тонкой очистки состоит из мелких пор, и если агломераты достигнут размеров этих пор, то фильтр перестает работать. Это приводит к прекращению поступления топлива, а значит, и работы двигателя. Поэтому, чтобы не ухудшать работу двигателя, нужно подогревать топливо, и только после этого добавлять присадку.

При использовании присадки-антигель улучшается дисперсная устойчивость парафиновых углеводородов в дизельном топливе при его хранении ниже температуры помутнения. Это достигается уменьшением размеров и предотвращением агломерации кристаллов парафинов. Присадка-антигель вводится при температуре на 5-7 °С выше начала помутнения дизельного топлива.

Для уменьшения износа двигателя применяют противоизноные присадки, которые служат для увеличения противоизносного действия масла в отношении тех деталей двигателя автомобиля, которые подвергаются смазке. Данные присадки образуют защитную пленку в результате прямого или опосредствованного контакта их активных ингредиентов с металлической поверхностью. Большинство противоизносных присадок представляют собой алкилдифиофосфаты цинка или другого вещества из группы фосфористых производных.

Принцип действия противоизносной присадки заключается в образовании на защищаемой поверхности пленки, которая состоит из продуктов механохимических превращений присадки на поверхности металла. Показателями эффективности противоизносной присадки являются: коэффициент трения, средний диаметр пятен износа и критическая нагрузка до заедания. Определяются эти показатели на лабораторных машинах трения. Дополнительно применяется показатель толщины пленки, образовавшейся на поверхности трения.

Действие противоизносных присадок начинается после их сорбирования на трущихся поверхностях. В случае наличия в топливе других присадок начинается конкуренция за поверхность и эффективность противоизносной присадки снижается. В этом случае необходимо увеличивать концентрации противоизносных присадок в 3-5 раз от рекомендованных производителем. Также определение нужной концентрации противоизносной присадки зависит от содержания в дизельном топливе серы: для дизтоплива с содержанием серы до 350 pmm оно составляет 50-100 pmm, для дизтоплива с содержанием серы до 50 pmm - не менее 150-200 pmm.

Так как качество дизельного топлива так же зависит от цетанового числа, используется следующий ряд присадок - цетаноповышающие. Этот вид присадок улучшает воспламеняемость дизельных топлив. Высокое цетановое число обеспечивает хорошие пусковые свойства дизельного топлива, что особенно важно при холодном запуске двигателя. Кроме того, обеспечивается уменьшение общего количества вредных выбросов с отработавшими газами, и эмиссии сизого дыма, что характерно для пускового периода.

Большинство российских НПЗ вырабатывают дизельное топливо с ЦЧ 48-50, в то время как требования технического регламента для дизельных топлив класса 3,4,5 и европейский стандарт EN-590 нормируют этот показатель на уровне 51 ед. Недостаток цетанового числа составляет 1-3 ед., что можно компенсировать добавлением в дизтопливо цетаноповышающей присадки.

Цетаноповышающие присадки действуют на начальных стадиях процесса горения. При распаде молекул, входящих в состав промоторов воспламенения - нитратов или пероксидов, по связям О-О и О-N с энергией активации около 150 кДж/моль, образуются свободные радикалы, которые инициируют воспламенение топлива.

Депрессорно-диспергирующие присадки применяют, для того, чтобы использование летнего дизельного топлива стало возможным в зимних условиях.

Зимнее дизтопливо получается смешением прямогонных, гидроочищенных углеводородных фракций вторичного происхождения с температурой выкипания 180--340 °C, углеводороды парафиновой группы при этом из топлива удаляются. Этот способ сложный и очень дорогой, поэтому объемы производства зимнего дизтоплива покрывают не более 10 % от потребности в нем российского рынка. Поэтому более легким путем является использование специальных присадок.

Изменение текучести дизельного топлива проходит в три стадии:

При достижении температуры помутнения: начало кристаллизации н-парафинов - топливо мутнеет. При этом размеры кристаллов еще малы и они проходят через фильтр. Текучесть топлива не меняется;

При достижении предельной температуры фильтруемости (ПТФ): кристаллы н-парафинов достигают размеров превышающих диаметры пор фильтров, топливо не прокачивается через фильтр, текучесть топлива ухудшается;

При достижении температуры застывания: кристаллическая решетка уплотняется и разрастается - топливо теряет текучесть.

Действие депрессорной присадки направлено не против возникновения кристаллов парафинов, а против их роста. Сам механизм действия депрессорных присадок окончательно не изучен, существует два типа действия:

Происходит сокристаллизация парафина и депрессора, когда молекула депрессора своей неполярной частью встраивается в кристалл парафина, а полярные части, остающиеся снаружи и мешают новым молекулам парафина осесть на кристалле и увеличить его размер;

Происходит адсорбция молекулы депрессора на поверхности кристалла парафина полярной частью, при этом неполярная обращена в среду и мешает сближению кристаллов парафина и их ассоциации в упорядоченные структуры, они при этом приобретают звездообразную форму.

В обоих случаях принципиальное значение имеет то, что действие депрессорной присадки начинается с того, что ее молекулы взаимодействуют с поверхностью зарождающихся кристаллов, т. е. в дизельном топливе уже должен начаться процесс образования кристаллов н-парафинов. Это и объясняет отсутствие влияния депрессорной присадки на температуру помутнения.

Дополнительный эффект применения депрессорных присадок состоит в положительном влиянии на смазывающую способность дизельного топлива, которая определяет срок службы элементов топливной системы. Смазывающая способность - это характеристика, показывающая способность гидродинамической и граничной смазки двигающихся частей ТНВД (топливный насос высокого давления дизельного двигателя).

Методы очистки

1. Гидроочистка -- одноступенчатый процесс, проходящий в наиболее мягких, по сравнению с гидрокрекингом и деструктивной гидрогенизацией, условиях. Процесс протекает при 350--430 °С, 3,0--6,0 МПа, циркуляции водородсодержащего газа 100--600 м3/м3 сырья и объемной скорости 3--10ч-1 с применением катализатора (обычно алюмокобальтмолибденовый или алюмоникельмолибденовый).

Гидроочистке (или гидрооблагораживанию) может подвергаться различное сырье, получаемое как при первичной перегонке нефти, так и при термокаталитических процессах, от газа до масел и парафина. Наибольшее применение гидроочистка имеет для обессеривания сырья каталитического риформинга, а также для получения реактивного и малосернистого дизельного топлива из сернистых и высокосернистых нефтей. При гидроочистке происходит частичная деструкция в основном сероорганических и частично кислород - и азотсодержащих соединений.

Продукты разложения насыщаются водородом с образованием сероводорода, воды, аммиака и предельных или ароматических углеводородов.

Термодинамика, химизм и механизм гидроочистки

Удаление гетероатомов происходит в результате разрыва связей C-S, C-N и C-O и насыщения образующихся осколков водородом. При этом сера, азот и кислород выделяется соответственно в виде H2S, NH3 и H2O. Алкены присоединяют водород по двойной связи. Частично гидрируются полициклические ароматические углеводороды.

Термодинамика процесса

Термодинамически процесс гидроочистки низкотемпературный. Для быстрого протекания реакций на существующих промышленных катализаторах достаточна температура 330-380С. Поскольку реакции присоединения водорода сопровождаются изменением объема, давление в реакционной зоне оказывает решающее влияние на глубину процесса. Наиболее часто при гидроочистке применяют давление 2,5-5,0 МПа [1].

Данные о термодинамике некоторых реакций гидрогенолиза сернистых соединений приведены в таблице 1 [2].

Таблица 1 - Тепловой эффект и изменение энергии Гиббса при гидрировании сераорганических соединений

Реакция

Тепловой эффект, кДж/моль

, кДж/моль

При

300 К

При

800 К

При

300 К

При 800 К

Н-C4H9SH + H2 н-C4H10 + H2S

+58

+67

-61

-63

Н-C6H13SH + H2 н-C6H14 + H2S

+59

+67

-62

-62

Н-C12H25SH + H2 н-C12H26 + H2S

+59

+67

-61

-61

(н-C4H9)2S + H2 н-C4H9SH + н-C4H10

+46

+55

-55

-64

Н-C4H9S - н-C11H23 + H2 н-C4H9SH + н-C11H24

+46

+55

-53

-60

Н-C4H9S - н-C11H23 + H2 н-C11H23SH + н-C4H10

+49

+55

-54

-60

(н-C3H7)2S2 + H2 2н-C3H7SH

+18

+28

-31

-49

(н-C6H13)2S2 + H2 2н-C6H13SH

+17

+24

-32

-51

+ H2 н-C4H10 + H2S

+113

+122

-97

-63

+ H2 н-C5H12 + H2S

+104

+118

-98

-74

+ H2 CH3CH2CH(CH3)2 +H2S

+261

+278

-170

-9

Из этих данных видно, что при температурах, представляющих практический интерес, равновесие реакций гидрирования сернистых соединений смещено в сторону углеводородов и сероводорода; для меркаптанов, сульфидов и дисульфидов с повышением температуры убыль энергии Гиббса при гидрировании увеличивается. Для тиофанов с повышением температуры убыль энергии Гиббса снижается, т. е. константы равновесия реакций уменьшаются, но при 800 К они больше 104 и равновесие реакций практически полностью смещено вправо. Особенно сильно снижается с увеличением температуры константа равновесия реакции гидрирования метилтиофена. Для всех сераорганических соединений, кроме тиофенов, термодинамические ограничения гидрирования в интервале 300-800 К отсутствуют. При низком парциальном давлении водорода наряду с гидрогенолизом могут протекать реакции типа:

2RSH H2S +RSR

Для подавления реакций такого рода необходимо высокое парциальное давление водорода. Для тиофенов высокая глубина гидрирования может быть

Достигнута при не слишком высоких температурах, при повышении температуры глубина гидрирования термодинамически ограничивается. В таблице 2 приведены данные о равновесной глубине гидрогенолиза тиофена (в % мол) до сероводорода и бутана при различных температурах и давлениях [2].

Таблица 2 - Глубина гидрогенолиза тиофена в зависимости от температуры и давления

Температура, К

Давление, МПа

0,1

1,0

4,0

10,0

500

99,2

99,9

100,0

100,0

600

98,1

99,5

99,8

99,8

700

90,7

97,6

99,0

99,4

800

68,4

92,3

96,6

98,0

900

28,7

79,5

91,8

95,1

Гидрогенолиз тиофена с глубиной 99% и выше при давлениях 10 МПа включительно возможен при температурах не более 700 К. Можно предполагать, что для высокомолекулярных полициклических ароматических углеводородов, содержащих серу в тиофеновых кольцах, конденсированных с ароматическими, термодинамика гидрогенолиза менее благоприятна, чем для тиофена, а возможная глубина реакции при одинаковых давлениях и температурах ниже. Тиофаны при высоких температурах и невысоких давлениях могут дегидрироваться до тиофенов:

+ Н2

При 800 К эта реакция протекает с уменьшением энергии Гиббса на 44кДж/моль. Таким образом, глубокая очистка нефтепродуктов от серы, содержащейся в виде тиофанов, возможна при высоких парциальных давлениях водорода (3 МПа и выше) и при температурах ниже 700 К [2].

Гидрирование ароматических углеводородов идет с выделением теплоты и снижением энтропии, константы равновесия гидрирования быстро уменьшаются с ростом

При повышенных температурах константа равновесия полного гидрирования резко уменьшается с увеличением числа конденсированных колец в молекуле. Увеличение давления в большей степени повышает глубину полного гидрирования, однако при повышенных температурах при температурах 600 - 700 К константы гидрирования настолько малы, что даже при очень высоких давлениях возможная глубина гидрирования мала. Термодинамически значительно более выгодно ступенчатое гидрирование полициклических углеводородов с гидрогенолизом гидрированных колец и деалкилированием.

Суммарный тепловой эффект гидроочистки составляет 20 - 87 кДж на 1 кг сырья для прямогонных фракций. Добавление к прямогонному сырью до 30% фракций вторичного происхождения повышает теплоту реакции до 125-187 кДж/кг в зависимости от содержания непредельных углеводородов в сырье [4].

Похожие статьи




Способы улучшения качества дизельного топлива - Сравнительный анализ методов обессеривания

Предыдущая | Следующая