Асимптотически оптимальный план - Модели оптимального плана управления запасами

Из проведенных рассуждений ясно, что напряженный план с Q=Q0 является оптимальным тогда и только тогда, когда горизонт планирования Т приходится на начало очередного зубца, т. е.

(5)

Для всех остальных возможных горизонтов планирования Т этот план не является оптимальным. Оптимальным будет напряженный план с другим размером поставки. Для дальнейшего весьма существенно, что при изменении горизонта планирования Т оптимальный план меняется на всем интервале [0; T].

Как происходит это изменение? При малых Т делается лишь одна поставка (при Т = 0), график уровня запаса на складе состоит из одного зубца. При увеличении Т размер зубца плавно увеличивается. В некоторый момент Т(1) происходит переход от одного зубца к двум. В этот момент оптимальны сразу два плана поставки - с одним зубцом и с двумя. При переходе к планам с двумя зубцами размер зубца скачком уменьшается. При дальнейшем увеличении горизонта планирования оптимальный план описывается графиком с двумя одинаковыми зубцами, размер которых плавно растет. Далее в момент Т(2) становится оптимальным план с тремя зубцами, размер которых в этот момент скачком уменьшается (в компенсацию за увеличение числа скачков). И т. д.

Проблема состоит в том, что в реальной экономической ситуации выбор горизонта планирования Т весьма субъективен. Возникает вопрос, какой план разумно использовать, если горизонт планирования не известен заранее. Проблема горизонта планирования возникает не только в логистике. Она является общей для любого перспективного планирования, поэтому весьма важна для стратегического менеджмента [19, 21]. Для решения проблемы горизонта планирования необходимо использование конкретной модели принятия решения, в рассматриваемом случае - классической модели управления запасами.

Ответ можно указать, если горизонт планирования является достаточно большим. Оказывается, можно использовать план, в котором все размеры поставок равны Q0. Для него уровень запаса на складе описывается функцией y0(t), 0 < t < + ?, состоящей из зубцов высоты Q0. Предлагается пользоваться планом, являющимся сужением этого плана на интервал [0; T). Другими словами, предлагается на интервале [0; T) использовать начальный отрезок этого плана. Он состоит из некоторого количества треугольных зубцов, а последний участок графика, описываемый трапецией, соответствует тому, что последняя поставка для почти всех горизонтов планирования не будет израсходована до конца. Такой план иногда называют планом Вильсона [19].

Ясно, что этот план не будет оптимальным (для всех Т, кроме заданных формулой (5)). Действительно, план Вильсона можно улучшить, уменьшив объем последней поставки. Однако у него есть то полезное качество, что при изменении горизонта планирования его начальный отрезок не меняется. Действительно, планы поставок для горизонтов планирования Т1 и Т2, определенные с помощью функции y0(t), 0 < t < + ?, задающей уровень запасов на складе, совпадают на интервале [0; min {Т1, Т2}).

Определение. Асимптотически оптимальным планом называется план поставок - функция такая, что

Где yopt(T) - оптимальный план на интервале [0; T).

В соответствии с определениями и обозначениями, введенными в начале раздела, - средние издержки за время Т для плана yopt(T), определенного на интервале [0; T), а f(T;y) - средние издержки за время Т для плана.

Теорема 1. План y = y0 является асимптотически оптимальным.

Таким образом, для достаточно больших горизонтов планирования Т планы y0(t), 0<t<T, все зубцы у которых имеют высоту Q0, имеют издержки, приближающиеся к минимальным. Следовательно, эти планы Вильсона, являющиеся сужениями одной и той же функции на интервалы [0; T) при различных Т, можно использовать одновременно при всех достаточно больших Т.

Замечание. Согласно подходу [19] решение проблемы горизонта планирования состоит в использовании асимптотически оптимальных планов, которые близки (по издержкам) к оптимальным планам сразу при всех достаточно больших Т.

Доказательство. По определению оптимального плана

(6)

Найдем нижнюю границу для рассматриваемого отношения. При фиксированном горизонте планирования Т можно указать неотрицательное целое число n такое, что

Так как Tf(T; yopt(T)) и - общие издержки на интервалах [0; Т) и [0; nQ0/µ) соответственно при использовании оптимального на [0; Т) плана, то, очевидно, поскольку второй интервала - часть первого (или совпадает с ним), первые издержки больше вторых, т. е.

Tf(T; yopt(T)) > .

Далее, т. к. на интервале (0; nQ0/µ), включающем целое число периодов плана у0, оптимальным является начальный отрезок этого плана у0(nQ0/µ), то

> .

В правой части последнего неравенства стоит (здесь использована формула для минимального значения средних издержек f(T; y) при Т, кратном nQ0/µ). Из проведенных рассуждений вытекает, что

Tf(T; yopt(T)) > .(7)

Для общих издержек на интервалах [0; Т) и [0; (n + 1)Q0/µ) при использовании плана у0, очевидно, справедливо следующее неравенство

Tf(T; y0(T)) < .

Следовательно,

Tf(T; y0 (T)) < /(8)

Из неравенств (7) и (8) вытекает, что

Так как при Т > ?, то, учитывая неравенство (6), из последнего неравенства выводим справедливость заключения теоремы 1. Таким образом, асимптотическая оптимальность плана у0 доказана.

При небольшом Т средние издержки в плане Вильсона могут существенно превышать средние издержки в оптимальном плане. Превышение вызвано скачками функции f(T; y0(T)), связанными с переходами через моменты прихода очередных поставок (и увеличением общих издержек скачком на величину платы за доставку партии). Величину превышения средних издержек в плане Вильсона по сравнению с оптимальными планами можно рассчитать.

Пусть горизонт планирования

T = tk + е,

Где tk - момент прихода (k+1)-й поставки в плане Вильсона, е > 0. Тогда, как можно доказать,

Таким образом, затраты в плане Вильсона являются минимальными (относительно оптимального плана) при T = tk, k = 1, 2, ..., где tk - моменты прихода поставок. Напомним, что план Вильсона является оптимальным при указанных значениях Т. Однако при Т, бесконечно близком к tk, но превосходящем tk, затраты увеличиваются по сравнению с затратами в оптимальном плане в {1+1/(2k)} раз. При дальнейшем возрастании Т отношение издержек (средних или общих) в плане Вильсона к аналогичным издержкам в оптимальном плане постепенно уменьшается, приближаясь к 1 при приближении (снизу) к моменту tk+1 прихода следующей поставки. А там - новый скачок, но уже на меньшую величину {1+1/(2k+2)}. И т. д.

Сразу после прихода первой поставки отношение затрат составляет 1,5 (превышение на 50%), после прихода второй - 1,25 (превышение на 25%), третьей - 1,167 (превышение на 16,7%), четвертой - 1,125 (превышение на 12,5%), пятой - 1,1 (превышение на 10%), и т. д. Таким образом, при небольших горизонтах планирования Т превышение затрат может быть значительным, план Вильсона отнюдь не оптимальный. Но чем больше горизонт планирования, тем отклонение меньше. Уже после сотой поставки оно не превышает 0,5%.

Похожие статьи




Асимптотически оптимальный план - Модели оптимального плана управления запасами

Предыдущая | Следующая