Влияние отклонений от оптимального объема партии - Модели оптимального плана управления запасами

В реальных производственных и управленческих ситуациях часто приходится принимать решения об использовании объемов партии, отличных от оптимальной величины Q0, рассчитанной по формуле квадратного корня (3). Например, при ограниченной емкости склада или для обеспечения полной загрузки транспортных средств большой вместимости. Это возможно также в ситуации, когда величина партии измеряется в целых числах (штучный товар) или даже в десятках, дюжинах, упаковках, ящиках, контейнерах и т. д., а величина Q0 не удовлетворяет этому требованию и, следовательно, не может быть непосредственно использована в качестве объема поставки.

Поэтому необходимо уметь вычислять возрастание средних издержек при использовании напряженного плана с одинаковыми поставками объема Q, отличного от Q0, по сравнению со средними издержками в оптимальном плане. Будем сравнивать средние издержки за целое число периодов. Как показано выше, они имеют вид

,

Где Q - объем партии. Тогда

(9)

Это тождество нетрудно проверить с помощью простых алгебраических преобразований.

Пример 2. Пусть используется план с Q = 0,9 Q0. Тогда

Таким образом, изменение объема партии на 10% привело к увеличению средних издержек лишь на 0,56%.

Пример 3. Пусть используемое значение объема поставки Q отличается от оптимального не более чем на 30%. На сколько могут возрасти издержки?

Из формулы (9) вытекает, что максимальное возрастание издержек будет в случае Q = 0,7 Q0. Тогда

Таким образом, издержки могут возрасти самое большее на 6,43%.

На первый взгляд представляется удивительным, что сравнительно большое отклонение значения переменной Q от оптимального (на 10%) приводит к пренебрежимо малому возрастанию значения оптимизируемой функции. Этот факт имеет большое прикладное значение. Из него следует, что область "почти оптимальных" значений параметра весьма обширна, следовательно, из нее можно выбирать для практического использования те или иные значения, исходя из иных принципов. Можно, например, минимизировать какую-либо иную целевую функцию, тем самым решая задачу многокритериальной оптимизации. Можно "вписаться" в действующую дискретную систему возможных значений параметров. И т. д.

Важное замечание 1. Обширность области "почти оптимальных" значений параметра - общее свойство оптимальных решений, получаемых путем минимизации гладких функций. Действительно, пусть необходимо минимизировать некоторую функцию g(x), трижды дифференцируемую. Пусть минимум достигается в точке х0. Справедливо разложение Тейлора-Маклорена

Однако в х0 выполнено необходимое условие экстремума

Следовательно, с точностью до бесконечно малых более высокого порядка (по сравнению с (х-х0)2) справедливо равенство

(10)

Это соотношение показывает, что приращение значений минимизируемой функции - бесконечно малая более высокого порядка по сравнению с приращением независимой переменной. Если

Х = х0 + е, то

G(x) - g(x0) = Се2,

Где

Вернемся к классической модели управления запасами. Для нее надо рассматривать f1(Q) в роли g(x). С помощью соотношения (10) заключаем, что

С точностью до бесконечно малых более высокого порядка. Вычислим вторую производную f1(Q). Поскольку

То

Теперь заметим, что

Следовательно,

С точностью до бесконечно малых более высокого порядка. Отличие этой формулы от точной формулы (9) состоит только в том, что Q в знаменателе одной из дробей заменено на Q0.

Похожие статьи




Влияние отклонений от оптимального объема партии - Модели оптимального плана управления запасами

Предыдущая | Следующая