Введение - Элементы конструкции турбореактивных двигателей

Турбореактивный двигатель (ТРД, англоязычный термин -- turbojet engine) -- воздушно-реактивный двигатель (ВРД), в котором сжатие рабочего тела на входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счет совместного действия встречного потока воздуха и компрессора, размещенного в тракте ТРД сразу после входного устройства, перед камерой сгорания. Компрессор приводится в движение турбиной, смонтированной на одном валу с ним, и работающей на том же рабочем теле, нагретом в камере сгорания, из которого образуется реактивная струя. Во входном устройстве осуществляется рост статического давления воздуха за счет торможения воздушного потока. В компрессоре осуществляется рост полного давления воздуха за счет совершаемой компрессором механической работы. В камере сгорания производится подвод теплоты. Часть энергии рабочего тела отнимается турбиной. В реактивном сопле формируется реактивная струя.

Ключевые характеристики ТРД следующие.

    1. Создаваемая двигателем тяга. 2. Удельный расход топлива. (Масса топлива потребляемая за единицу времени для создания единицы тяги/мощности) 3. Расход воздуха. (Масса воздуха проходящего через каждое из сечений двигателя за единицу времени) 4. Степень повышения полного давления в компрессоре 5. Температура газа на выходе из камеры сгорания. 6. Масса и габариты.

Степень повышения полного давления в компрессоре является одним из важнейших параметров ТРД, поскольку от него зависит эффективный КПД двигателя. Если у первых образцов ТРД (Jumo-004) этот показатель составлял 3, то у современных он достигает 40 (General Electric GE90). Для повышения газодинамической устойчивости компрессоров они выполняются двухкаскадными. Каждый из каскадов работает со своей скоростью вращения и приводится в движение своим каскадом турбины, которую также делают двухкаскадной. При этом вал 1-го каскада компрессора (низкого давления), вращаемого последним (самым низкооборотным) каскадом турбины, проходит внутри полого вала компрессора второго каскада (высокого давления). Каскады двигателя также именуют роторами низкого и высокого давления.

ТРД J85 производства компании General Electric. Между 8 ступенями компрессора и 2 ступенями турбины расположена кольцевая камера сгорания.

Камера сгорания большинства ТРД имеет кольцевую форму и вал турбина-компрессор проходит внутри кольца камеры. При поступлении в камеру сгорания воздух разделяется на 3 потока.

Первичный воздух -- поступает через фронтальные отверстия в камере сгорания, тормозится перед форсунками и принимает непосредственное участие в формировании топливно-воздушной смеси. Непосредственно участвует в сгорании топлива. Топливо-воздушная смесь в зоне сгорания топлива в ВРД по своему составу близка к стехиометрической.

Вторичный воздух -- поступает через боковые отверстия в средней части стенок камеры сгорания и служит для их охлаждения путем создания потока воздуха с гораздо более низкой температурой, чем в зоне горения.

Третичный воздух -- поступает через специальные воздушные каналы в выходной части стенок камеры сгорания и служит для выравнивания поля температур рабочего тела перед турбиной.

Из камеры сгорания нагретое рабочее тело поступает на турбину, расширяется, приводя ее в движение и отдавая ей часть своей энергии, а после нее расширяется в сопле и истекает из него, создавая реактивную тягу.

ТРД ВК-1 КБ Климова, с редко использующимися центробежным компрессором и трубчатой камерой сгорания. Использовался на самолетах МиГ-15, МиГ-17

Благодаря компрессору ТРД (в отличие от ПВРД) может "трогать с места" и работать при низких скоростях полета, что для двигателя самолета является совершенно необходимым, при этом давление в тракте двигателя и расход воздуха обеспечиваются только за счет компрессора.

При повышении скорости полета давление в камере сгорания и расход рабочего тела растут за счет роста напора встречного потока воздуха, который затормаживается во входном устройстве (так же, как в ПВРД) и поступает на вход низшего каскада компрессора под давлением более высоким, чем атмосферное, при этом повышается и тяга двигателя.

Диапазон скоростей, в котором ТРД эффективен, смещен в сторону меньших значений, по сравнению с ПВРД. Агрегат "турбина-компрессор", позволяющий создавать большой расход и высокую степень сжатия рабочего тела в области низких и средних скоростей полета, является препятствием на пути повышения эффективности двигателя в зоне высоких скоростей:

Температура, которую может выдерживать турбина, ограничена, что накладывает ограничение на количество тепловой энергии, подводимой к рабочему телу в камере сгорания, а это ведет к уменьшению работы, производимой им при расширении.

Повышение допустимой температуры рабочего тела на входе в турбину является одним из главных направлений совершенствования ТРД. Если для первых ТРД эта температура едва достигала 1000 К, то в современных двигателях она приближается к 2000 К. Это обеспечивается как за счет применения особо жаропрочных материалов, из которых изготовляются лопатки и диски турбин, так и за счет организации их охлаждения: воздух из средних ступеней компрессора (гораздо более холодный, чем продукты сгорания топлива) подается на турбину и проходит сквозь сложные каналы внутри турбинных лопаток.

Турбина поглощает часть энергии рабочего тела перед поступлением его в сопло.

В результате максимальная скорость истечения реактивной струи у ТРД меньше, чем у ПВРД.

Воздушно-реактивные двигатели по способу предварительного сжатия воздуха перед поступлением в камеру сгорания разделяются на компрессорные и бескомпрессорные. В бескомпрессорных воздушно-реактивных двигателях используется скоростной напор воздушного потока. В компрессорных двигателях воздух сжимается компрессором. Компрессорным воздушно-реактивным двигателем является турбореактивный двигатель (ТРД). В группу, получившую название смешанных или комбинированных двигателей, входят турбовинтовые двигатели (ТВД) и двухконтурные турбореактивные двигатели (ДТРД). Однако конструкция и принцип работы этих двигателей во многом схожи с турбореактивными двигателями. Часто все типы указанных двигателей объединяют под общим названием газотурбинных двигателей (ГТД). В качестве топлива в газотурбинных двигателях используется керосин.

Похожие статьи




Введение - Элементы конструкции турбореактивных двигателей

Предыдущая | Следующая