Самородные минералы углерода. - Биогенные элементы в верхних слоях литосферы

Эта группа представлена двумя резко различными по физическим свойствам полиморфными модификациями углерода: алмазом и графитом.

кристаллическая решетка алмаза. а - изображение центров атомов; в - та же решетка в виде тетраэдров, вершины и центры которых являются центрами атомов углерода

Рис. 1. Кристаллическая решетка алмаза. А - изображение центров атомов; В - та же решетка в виде тетраэдров, вершины и центры которых являются центрами атомов углерода.

Кристаллическая структура алмаза (рис. 1) в целом как бы похожа на структуру гранецентрированного куба, но отличается от нее тем, что атомы углерода располагаются не только на гранях куба, но также в центрах половинного числа малых кубов, чередующихся с пустыми малыми кубами. Обычно представляют, что атомы углерода в кристаллической структуре алмаза соединены друг с другом исключительно ковалентными связями по направлениям, соединяющим центр тетраэдра с его вершинами. Однако Н. В. Белов развил более естественное представление о структуре алмаза, как о структуре типа ZnS с двумя сортами ионов-С4+ и С4- (радиус катиона С4+ составляет около 0,15, а аниона О4--около 1,5Е), что обусловливает плотнейшую упаковку анионов в структуре. С таким представлением хорошо увязываются гемиэдрические черты кристаллов алмаза и ряд таких свойств, как бесцветность, низкая электропроводность, необычайно высокая твердость, весьма высокая устойчивость при широких колебаниях температуры и давления (в частности, при нагреве до температуры 2500° в отсутствии кислорода не обнаруживает никаких изменений), очень высокая устойчивость по отношению к кислотам и щелочам и др.

расположение центров атомов в листах решетки графита. каждый следующий лист как бы сдвинут на расстояние в половину диаметра шестерных колец

Рис. 3. Расположение центров атомов в листах решетки графита. Каждый следующий лист как бы сдвинут на расстояние в половину диаметра шестерных колец

Структура графита весьма существенно отличается от структуры алмаза Ионы углерода в графите лежат листами, представленными плоскими гексагональными сетками (рис. 3). По Н. В Белову, кристаллическая структура графита представляет плотнейшую упаковку крупных анионов С4, в которой половина треугольников в каждом листе занята маленькими катионами С4+. Каждый ион в плоской сетке окружен тремя соседними ионами на расстоянии 1,42Е (в алмазе 1,54Е), расстояние же между плоскими сетками 3,40Е, т. е. в два раза больше. Отсюда становится понятным ряд свойств графита: его значительно меньший удельный вес по сравнению с алмазом, чрезвычайно легкая расщепляемость на тонкие чешуйки, резко выраженная оптическая анизотропия, а также анизотропия твердости, которую удается установить при очень точных тонких исследованиях (перпендикулярно к плоскости спайности 5,5 по Моосу, а в то же время, благодаря очень слабому сцеплению листов, настолько мягок, что мажет бумагу и пальцы). Этим же объясняется неоднородность поглощения света, чем и обусловлен черный цвет минерала. Допускают, что тип связи атомов в графите, в отличие от алмаза, в какой-то мере носит металлический характер, т. е. в связях участвуют также "металлические" электроны. С этим вполне увязываются такие свойства, как полуметаллический блеск, высокая электропроводность и др. Но по химической и термической стойкости графит все же близок к алмазу.

расположение центров атомов в алмазе (а), при горизонтальном расположении плоских сеток (111), и в графите (б)

Рис. 4. Расположение центров атомов в алмазе (А), при горизонтальном расположении плоских сеток (111), и в графите (Б)

Если мы решетку алмаза изобразим в таком виде, как это показано на рис. 4-А, т. е. вдоль тройной оси (ср. номера атомов на рис. 1-А), то в горизонтальных плоских сетках также заметим гексагональные кольца (атомы 6,11, 8, 9, 7 и 10), с той лишь разницей, что эти сетки не совсем плоские: три атома располагаются несколько выше по сравнению с другими тремя.

Алмаз - С. Название происходит от греческого слова "адамас" - непреодолимый (очевидно, имелись в виду его наивысшая твердость и устойчивость по отношению к физическим и химическим агентам).

Разновидности:

    - борт - неправильной формы сростки и шаровидные лучистые агрегаты; - карбонадо - тонкозернистые пористые агрегаты, окрашенные аморфным графитом и посторонними примесями в буровато-черный цвет.

Происхождение. Коренные месторождения генетически связаны с ультраосновными глубинными изверженными породами: перидотитами, кимберлитами и др. В этих породах кристаллизация алмаза происходит, очевидно, на больших глубинах в условиях высоких температур и давления. Судя по формам и условиям нахождения, алмаз кристаллизовался в магмах одним из первых. Не ясно, кристаллизовался ли алмаз за счет углерода самой магмы или за счет углерода, усваивавшегося из окружающих пород. В ассоциациях с алмазом наблюдались: графит, оливин - (Mg, Fe)2SiO4, хромшпинелиды - (Fe, Mg)(Cr, Al, Fe)2O4, магнетит - FeFe2O4, гематит - Fe2O3 и др.

Россыпные месторождения алмаза, устойчивого в экзогенных условиях, образуются за счет разрушения и размыва алмазоносных пород.

Графит - С. Название происходит от греческого слова "графо" - пишу. Разновидности:

    - графитит - скрытокристаллическая разность, - шунгит - аморфная разность, образовавшаяся, повидимому, в результате природного коксования углей.

Происхождение. В природе графит образуется при восстановительных процессах в условиях высоких температур.

Встречается иногда среди магматических горных пород разнообразного состава. Источником углерода во многих случаях являются вмещающие углеродсодержащие горные породы.

Известны случаи находок графита в пегматитах. Встречаются месторождения на контактах известняков с изверженными породами в провинциях Онтарио и Квебек в Канаде, а также жильные месторождения крупнолистоватого графита, например на о. Цейлон.

Широко распространены метаморфические месторождения графита, возникшие за счет каменных углей или битуминозных отложений в условиях регионального метаморфизма или под влиянием интрузий магмы.

Трансформация и накопление соединений азота в верхних слоях литосферы.

Вследствие исключительной прочности молекулы N2, почти полностью сосредоточен в атмосфере. Часть газообразного азота растворена в природных водах, которые содержат и растворенные азотсодержащие органические вещества и неорганические ионы: катион аммония, нитрит-ион и нитрат-ион. Поскольку азот не образует нерастворимых солей, он только в редких случаях накапливается в литосфере. Так, в южноамериканской пустыне Атакама есть скопления нитрата натрия, который, несмотря на высокую растворимость в воде, сохраняется благодаря исключительно сухому климату.

Слово "азот" буквально означает "безжизненный", поскольку он не поддерживает дыхание. Однако этот элемент является обязательной составной частью белков. Поэтому азот в значительном количестве содержится в живых организмах и "мертвом" органическом веществе. Азот непрерывно перемещается между атмосферой, океаном, живыми организмами и почвой.

В атмосфере под действием электрических разрядов азот переходит сначала в монооксид азота, а затем в диоксид азота. Влага воздуха и кислород превращают диоксид азота в азотную кислоту

4NO2 + 2H2O + O2 = 4HNO3

Соединения азота легко растворяются в атмосферных осадках и попадают на поверхность Земли.

Большое значение в связывании атмосферного азота имеет жизнедеятельность клубеньковых бактерий, обитающих на корнях бобовых растений. Ферменты этих бактерий превращают молекулярный азот в соединения, которые затем усваиваются растениями. Из растений связанный азот поступает в организмы животных, в основном, в виде аминокислот и белков. После гибели живых организмов органические вещества превращаются в неорганические соединения, снова усваиваемые растениями. Часть азота в почвах превращается в молекулярный азот и переходит в атмосферу. Молекулярный азот образуется также при полном окислении органических веществ.

Соединения азота попадают в атмосферу с выбросами промышленных предприятий и транспорта, а в природные воды - с бытовыми и промышленными отходами.

Слишком большое количество растворимых соединений азота в почве приводит к росту их содержания в продуктах питания и питьевой воде, это может стать причиной серьезных заболеваний. Соединения азота накапливаются в водоемах и вызывают зарастание озер и водохранилищ. Пока подобные явления наблюдаются лишь в отдельных районах, где в окружающую среду попадает много соединений азота. В целом же природа пока справляется с тем количеством связанного азота, которое производится человеком.

Похожие статьи




Самородные минералы углерода. - Биогенные элементы в верхних слоях литосферы

Предыдущая | Следующая