Энергия кристаллической решетки. Типы кристаллов: молекулярные, ковалентные, ионные и металлические - Систематика химических элементов

По характеру химической связи кристаллы делятся на 4 группы: молекулярные, ковалентные, ионные и металлические.

В соответствии с этой классификацией важной характеристикой кристаллов является Энергия кристаллической решетки. Ее определяют как энергию, которую необходимо затратить на разрушение данного кристалла и удаление образующих его частиц за пределы их взаимодействия. Энергию кристаллической решетки обычно измеряют в кДж и относят к 1 моль вещества кристаллической решетки.

Молекулярные кристаллы

Структурными единицами являются молекулы, связанные друг с другом либо вандерваальсовыми силами, либо водородными связями. Малая энергия межмолекулярного взаимодействия, т. е. низкая энергия кристаллической решетки, определяет набор физических свойств кристаллов этого типа: низкую прочность, низкую температуру плавления, высокую летучесть, очень низкие электропроводность и теплопроводность.

Наиболее низкой энергией кристаллической решетки обладают вещества с Неполярными молекулами: благородные газы, галогены, а также CO2, CH4, ВF3. Связь в подобных кристаллах между молекулами осуществляется Дисперсионной составляющей сил Ван-дер-Ваальса.

С увеличением электрического момента диполя молекул, образующих кристалл, увеличивается энергия кристаллической решетки, поэтому наибольшим значением энергии кристаллической решетки обладают кристаллы, между молекулами которых реализуются водородные связи: НСl, NН3, H2O.

Одна из специфических особенностей молекулярных кристаллов заключается в том, что в силу незначительной энергии межмолекулярного взаимодействия молекулы сохраняют свою химическую индивидуальность.

Поскольку силы Ван-дер-Ваальса являются ненаправленными, то для молекулярных кристаллов со сферическими частицами характерна структура плотнейшей упаковки в обоих вариантах - кубическая, в которую кристаллизуются все благородные газы, кроме Не, и гексагональная (Не, N2, H2).

Для молекул несферической формы наблюдается искажение плотнейшей упаковки. Наибольшего отличия эти искажения достигают у молекулярных кристаллов с водородными связями, поскольку водородные связи имеют направленный характер, что снижает значение координационного числа до 4.

Расстояние между молекулами в молекулярных кристаллах достаточно велико и достигает 3,5 - 4А (1 А =10-10 м).

Ковалентные кристаллы

Структурными единицами являются атомы одного или нескольких элементов, связь между которыми носит ковалентный характер. В ковалентных кристаллах валентные электроны соседних атомов обобществлены, образуя мостики электронной плотности между атомами.

Ковалентные кристаллы сравнительно немногочисленны: С, Si, Ge, Sn, SiC, Al4N3, ZnS.

Энергия кристаллической решетки практически совпадает с энергией ковалентной связи и лежит в диапазоне 200 -500 кДж/моль.

Вследствие высоких значений энергии кристаллической решетки ковалентные кристаллы обладают высокими температурами кипения и плавления, высокой твердостью. Диапазон их электропроводящих свойств достаточно широк: от типичных диэлектриков, каковым является алмаз, через полупроводники Si и Ge к металлу, каким является Sn (серое).

Ковалентный кристалл можно рассматривать как одну гигантскую молекулу. Координационное число большинства ковалентных кристаллов не превышает 4; это означает, что каждый атом в кристалле образует четыре направленные ковалентные связи. Направленность связи искажает для ковалентных кристаллов плотнейшую упаковку.

Ионная связь. Ионные кристаллы

Связь называется Ионной, если она осуществляется путем электростатического взаимодействия разноименно заряженных ионов, образовавшихся при смещении электронов от одного атома к другому.

Ее можно рассматривать как предельный случай ковалентной полярной связи. Ионная связь может возникать только в том случае, если различия в электроотрицательности взаимодействующих атомов достаточно велики.

Если разность относительных электроотрицательностей взаимодействующих атомов Х равна 0, то образуется ковалентная неполярная связь; если 0<х<2 - Ковалентная полярная; если Х> 2-Ионная связь.

Поскольку электростатическое поле иона имеет сферическую симметрию, то ионная связь не обладает направленностью.

Взаимодействие двух заряженных ионов не приводит к полной компенсации их полей, поэтому ионная связь не обладает насыщаемостью.

Для ионной связи эффективные заряды атомов 1. Химическая связь не может быть на 100% ионной. Долю ионного характера связи называют Степенью ионности, которая количественно характеризуется эффективными зарядами атомов в молекуле.

Таким образом, природа химической связи едина, и существующее различие между видами связи имеет количественный характер.

Кристаллические решетки кристаллов этого типа состоят из чередующихся положительно и отрицательно заряженных ионов, между которыми действуют электростатические силы притяжения.

Ионные кристаллы образуются при взаимодействии атомов, имеющих большую разность электроотрицательностей. Примерами ионных кристаллов являются галогениды щелочных (NaСl, KF) или щслочно-земельных (СаF2) металлов. В состав ионных кристаллов могут входить и сложные ионы: .

Энергия кристаллической решетки достигает высоких значений (для NaСl: 770 кДж/моль); это, в свою очередь, обусловливает следующий набор физических свойств: высокую твердость, хрупкость. Высокие температуры плавления и кипения, высокие теплоты плавления. Подобные свойства определены не только значительной энергией кристаллической решетки, но и структурой каркаса ионного кристалла.

Многие ионные кристаллы относят к классу диэлектриков; при комнатной температуре их электропроводность на 20 порядков ниже, чем электропроводность металлов. С увеличением температуры электропроводность ионных кристаллов возрастает.

Во многих ионных кристаллах наряду с электростатическим притяжением действуют ковалентные связи, а также силы Ван-дер-Ваальса, причем присутствие ковалентной связи вызывает определенные отклонения в физико-химических свойствах кристаллов этого типа, которые не объясняются электростатической моделью.

Наименьшее влияние ковалентности наблюдается для кристаллов галогенидов щелочных металлов.

Так как ионная связь не имеет направленного характера, а многим ионам можно приписать сферическую форму, то структура большинства ионных кристаллов тождественна структурам плотнейшей упаковки.

Вещества ионной природы с многоатомными ионами также образуют ионные кристаллы. Это наблюдается даже для таких ионов, как, которые имеют тригональную симметрию.

Металлические кристаллы

Более 80 из 114 элементов периодической системы обладают металлическими свойствами. К металлическим элементам относятся все s-элементы (кроме Н и Не), все D- и f-элементы, а также часть p-элементов.

Металлические свойства определяются высокими значениями электропроводности и теплопроводности, тягучестью и ковкостью, металлическим блеском, а также высокой отражательной способностью в видимой части спектра.

По энергии кристаллической решетки металлы занимают промежуточное положение между молекулярными и ковалентными кристаллами.

Чрезвычайно высокие значения по сравнению с другими типами кристаллов электропроводности и теплопроводности указывают на высокую подвижность и большую "свободу" электронов в пространственной структуре кристалла.

С точки зрения теории строения атомов, характерные металлические свойства проявляют вещества, образованные элементами с небольшим числом валентных электронов и значительным числом вакантных орбиталей на последнем энергетическом уровне.

За счет этих особенностей при кристаллизации атомы будут укладываться с максимально возможной плотностью, чтобы их незаполненные орбитали оказались заселены валентными электронами.

Таким образом, валентные электроны участвуют в образовании связей сразу с 8 или 12 атомами. В этих условиях валентные электроны с небольшой энергией ионизации перемещаются по доступным орбиталям всех соседних атомов, обеспечивая связь между ними. Валентные электроны в металлических кристаллах являются нелокализованными. Такая нелокализованная связь называется Металлической связью. Для ее описания используется модель "свободного электрона", согласно которой в узлах кристаллической решетки находятся катионы, погруженные в "электронный газ" из нелокализованных электронов. Устойчивость такой системы объясняется силами притяжения между катионной решеткой и "электронным газом", движение которого подчиняется классическим законам движения газообразных молекул.

С увеличением температуры увеличивается амплитуда колебаний катионов, а значит, уменьшается длина свободного пробега электронов в кристалле, что приводит к снижению его электрической проводимости.

Большинство металлов в силу ненаправленного характера металлической связи кристаллизуются в структуры плотнейшей упаковки.

Расстояние между частицами кристаллов с металлической ковалентной и ионной связями составляет 1,5-2,5 А.

Похожие статьи




Энергия кристаллической решетки. Типы кристаллов: молекулярные, ковалентные, ионные и металлические - Систематика химических элементов

Предыдущая | Следующая