Введение - Анализ способов получения глиоксаля и технологических схем окисления одноатомных спиртов

Синтез альдегидов и кетонов парофазным каталитическим окислением спиртов осуществляется во всех промышленно-развитых странах. Таким путем получают формальдегид, ацетон, метилэтилкетон, масляный, изовалериановый альдегиды и др. Их производство в мире непрерывно растет в связи с широким использованием в различных органических синтезах.

Глиоксаль -- простейший диальдегид -- является активным химическим веществом, близким по свойствам к формальдегиду, но менее токсичным и превосходящим формальдегид по реакционной способности. Глиоксаль широко используется в процессах синтеза фармацевтических препаратов, гетероциклических соединений, клеев, смол в кожевенной, бумажной, деревообрабатывающей и текстильной промышленности. В связи с широким практическим использованием глиоксаля, интерес к его синтезу неуклонно растет. Мировое производство глиоксаля составляет свыше 1,5 млн. тонн в год. Основными производителями являются Германия (BASF Co), США (Clariant Co, Fine Chemical Division), FOB Company, International Specialty Chemicals и др. В России производство глиоксаля отсутствует, хотя потребность в нем составляет свыше 10 тыс. тонн в год.

Известен ряд способов синтеза глиоксаля, среди которых наиболее экономически выгодным и экологически безопасным является процесс парофазного окисления этиленгликоля на серебряных катализаторах. Процесс является сравнительно новым, сведения о нем содержатся, главным образом, в патентах и немногочисленных научных публикациях.

Широкое разнообразие промышленного использования глиоксаля и его соединений на его основе обусловлено повышенной химической активностью его молекулы. Глиоксаль -- один из наиболее близких по свойствам заменителей формальдегида, являющегося многотоннажным продуктом химической промышленности и основным сырьем синтеза поликонденсационных пластмасс синтетических смол, клеев, лакокрасочных материалов. Мировое производство формалина оценивается в 15 млн. тонн в год [6].

Однако исследования последних лет показали, что формальдегид является канцерогенным веществом, его аллергенная и мутагенная активность проявляется даже при использовании предметов потребления, изготовленных из материалов, в синтезе которых участвовал формальдегид [3].

Токсикологические характеристики глиоксаля не установлены. Разнообразное промышленное применение глиоксаля вызвано повышенной реакционной способностью его молекулы и способностью образовывать макромолекулы сетчатой структуры. Текстильная промышленность использует это свойство глиоксаля для придания целлюлозным и смесовым тканям несминаемости, повышения их износостойкости. Бисульфитный продукт глиоксаля служит для выравнивания температур при крашении полиамидов кислотными красителями и целлюлозных волокон смешанными красителями.

Бумажная, фотографическая, табачная отрасли промышленности также используют глиоксаль как сшивающий агент полимерных материалов и целлюлозы на стадии образования бумажного листа и для улучшения его водостойкости. Он находит применение при изготовлении офсетной бумаги, обоев, вступая в реакцию с такими веществами, как крахмал, поливиниловый спирт, целлюлоза, полиакриламид.

Водостойкость адгезивов на основе полиакрилатов и винилацетата повышается при взаимодействии их молекул с глиоксалем. Композиции глиоксаля с Na2SiO3 используют для замедления отверждения цемента, гипса, литьевых форм, а также для закрепления почвы при земельных работах.

Очень важные перспективы применения глиоксаля открываются в фармацевтической промышленности. Широкий спектр производных глиоксаля представлен сульфаниламидными, противотуберкулезными и бактерицидными препаратами.

Похожие статьи




Введение - Анализ способов получения глиоксаля и технологических схем окисления одноатомных спиртов

Предыдущая | Следующая