Понятие кристаллизации насыщенных растворов и способы получения насыщенных растворов, Понятие кристаллизации - Синтез ацетата натрия ("Горячий лед")

Понятие кристаллизации

Кристаллизамция -- процесс фазового перехода вещества из жидкого состояния в твердое кристаллическое с образованием кристаллов. Фазой называется однородная часть термодинамической системы отделенная от других частей системы (других фаз) поверхностью раздела, при переходе через которую химический состав, структура и свойства вещества изменяются скачками [6].

Кристаллизация -- это процесс выделения твердой фазы в виде кристаллов из растворов или расплавов, в химической промышленности процесс кристаллизации используется для получения веществ в чистом виде [1].

Кристаллизация начинается при достижении некоторого предельного условия, например, переохлаждения жидкости или пересыщения пара, когда практически мгновенно возникает множество мелких кристалликов -- центров кристаллизации. Кристаллики растут, присоединяя атомы или молекулы из жидкости или пара. Рост граней кристалла происходит послойно, края незавершенных атомных слоев (ступени) при росте движутся вдоль грани. Зависимость скорости роста от условий кристаллизации приводит к разнообразию форм роста и структуры кристаллов (многогранные, пластинчатые, игольчатые, скелетные, дендритные и другие формы, карандашные структуры и т. д.). В процессе кристаллизации неизбежно возникают различные дефекты.

На число центров кристаллизации и скорость роста значительно влияет степень переохлаждения.

Степень переохлаждения -- уровень охлаждения жидкого металла ниже температуры перехода его в кристаллическую (твердую) модификацию. Степень переохлаждения необходима для компенсации энергии скрытой теплоты кристаллизации. Первичной кристаллизацией называется образование кристаллов в металлах (и сплавах) при переходе из жидкого состояния в твердое [10].

Почти любое вещество может при известных условиях дать кристаллы. Кристаллы можно получить из раствора или из расплава данного вещества, а также из его паров.

Известно, что растворимость веществ зависит от температуры. Обычно с повышением температуры растворимость увеличивается, а с понижением - уменьшается. Одни вещества растворяются хорошо, другие - плохо. При растворении веществ образуются насыщенные и ненасыщенные растворы. Насыщенный раствор - это раствор, который содержит максимальное количество растворяемого вещества при данной температуре. Ненасыщенный раствор - это раствор, который содержит меньше растворяемого вещества, чем насыщенный при данной температуре.

Рассмотрим это на примере насыщенного раствора сахара, приготовленного при температуре 30°С и охлажденного затем до 20°С. При 30°С в 100 г воды растворяется 223 г сахара, при 20°С растворяется 205 г. Тогда при охлаждении от 30 до 20°С 18 г окажутся "лишними" и, как говорят, выпадут из раствора. Итак, один из возможных способов получения кристаллов состоит в охлаждении насыщенного раствора.

Можно поступить иначе. Если приготовить насыщенный раствор соли и оставить его в открытом стакане, через некоторое время мы обнаружим появление кристалликов. Почему они образовались? Внимательное наблюдение покажет, что одновременно с образованием кристаллов произошло еще одно изменение - уменьшилось количество воды. Вода испарилась, и в растворе оказалось "лишнее" вещество. Итак, другой возможный способ образования кристаллов - это испарение раствора.

Иногда при приготовлении раствора в особых условиях (осторожное охлаждение горячего насыщенного раствора в замкнутом сосуде) вещество образует не раствор (насыщенный) и осадок, а только раствор, называемый пересыщенным. Такие растворы обычно неустойчивы - при введении центра кристаллизации избыточное количество растворяемого вещества выпадает в осадок и образуется насыщенный раствор. Опыты по выращиванию кристалла из пересыщенного раствора более эффективны.

Как же происходит образование кристаллов из раствора?

Кристаллы "выпадают" из раствора не в одно какое-то мгновение: кристаллы растут. Не удается обнаружить глазом самые начальные моменты роста. Сначала немногие из беспорядочно движущихся молекул или атомов растворенного вещества собираются в том примерно порядке, который нужен для образования кристаллической решетки. Такую группу атомов или молекул называют зародышем.

Опыт показывает, что зародыши чаще образуются при наличии в растворе каких-либо центров кристаллизации. Центрами кристаллизации могут служить загрязнения на стенках посуды с раствором, пылинки, мелкие кристаллики растворенного вещества. Всего быстрее и легче кристаллизация начинается тогда, когда в насыщенный раствор помещается маленький кристалл - затравка. При этом выделении из раствора твердого вещества будет заключаться не в образовании новых кристалликов, а в росте затравки.

Рост зародыша не отличается от роста затравки. Смысл использования затравки состоит в том, что он "оттягивает" на себя выделяющееся вещество и препятствует, таким образом, одновременному образованию большого числа зародышей. Если же зародышей образуется много, то они будут мешать друг другу при росте и не позволят получить крупные кристаллы.

Как распределяются на поверхности зародыша порции атомов или молекул, выделяющихся из раствора?

Опыт показывает, что рост зародыша или затравки заключается как бы в перемещении граней параллельно самим себе в направлении, перпендикулярном к грани. При этом углы между гранями остаются постоянными - важнейший признак кристалла, вытекающий из его решетчатого строения.

Очень важно отметить, что скорость роста граней, т. е. скорость перемещения их параллельна самим себе, неодинакова у разных граней. При этом "зарастают" - исчезают именно те грани, которые перемещаются всего быстрее. Наоборот, медленно растущие грани оказываются самыми широкими, как говорят, наиболее развитыми.

Бесформенный обломок приобретает ту же форму, что и другие кристаллы, именно из-за анизотропии скорости роста. Вполне определенные грани развиваются за счет других всего сильнее и придают кристаллу форму, свойственную всем образцам этого вещества.

В целом ряде случаев кристаллы образуются из расплавленной массы - из расплава. В природе это совершается в огромных масштабах: из огненной магмы возникли базальты, граниты и многие другие горные породы.

Для примера можно расплавить лед, для этого его надо нагревать, поместив предварительно в сосуд с веществом измеритель температуры. Сначала температура льда увеличивалась до 0°С, потом вещество начинает плавиться, и подъем температуры приостановился. Пока все вещество не превратилось в жидкость, температура не изменится, дальнейший подъем температуры - это уже нагревание жидкости. Все кристаллические вещества имеют определенную температуру плавления. Лед плавится при 0°С, железо - при 1527°С, ртуть - при 39°С и т. д.

В каждом кристаллике атомы или молекулы вещества образуют упорядоченную упаковку и совершают малые колебания около своих средних положений. По мере нагревания тела скорость колеблющихся частиц возрастает вместе с размахом колебаний. Это увеличение скорости движения частиц с возрастанием температуры составляет один из основных законов природы, который относится к веществу в любом состоянии - твердом, жидком или газообразном.

Когда достигнута определенная, достаточно высокая температура кристалла, колебания его частиц становятся столь энергичными, что аккуратное расположение частиц становится невозможным - кристалл плавится. С началом плавления подводимое тепло идет уже не на увеличение скорости частиц, а на разрушение кристаллической решетки. Поэтому подъем температуры приостанавливается. Последующее нагревание - это увеличение скорости частиц жидкости.

Так же кристаллизации из расплава вышеописанного явления наблюдаются в обратном порядке: по мере охлаждения жидкости ее частицы замедляют свое хаотическое движение; при достижении определенной, достаточно низкой температуры скорость частиц уже столь мала, что некоторые из них под действием сил притяжения начинают пристраиваться одна к другой, образуя кристаллические зародыши. Пока все вещество не закристаллизируется, температура остается постоянной. Эта температура, как правило, та же, что и температура плавления.

Если не принимать специальных мер, то кристаллизация из расплава начнется сразу во многих местах. Кристаллики будут расти в виде правильных, свойственных им многогранников совершенно так же, как мы описывали выше. Однако свободный рост продолжается недолго: увеличиваясь, кристаллики наталкиваются друг на друга, в местах соприкосновения рост прекращается, и затвердевшее тело получает зернистое строение. Каждое зерно - это определенный кристаллик, которому не удалось принять своей правильной формы.

В зависимости от многих условий, и прежде всего от быстроты охлаждения, твердое тело может обладать более или менее крупными зернами: чем медленнее охлаждение, тем крупнее зерна. Размеры зерен кристаллических тел колеблются от миллионной доли сантиметра до нескольких миллиметров. В большинстве случаев зернистое кристаллическое строение можно наблюдать в микроскоп. Твердые тела обычно имеют именно такое мелкокристаллическое строение.

Чтобы вырастить крупный одиночный кристалл, требуется принять меры к тому, чтобы кристалл рос из одного места. А если уж начало расти несколько кристалликов, то надо сделать так, чтобы условия роста были благоприятны лишь для одного из них.

Вот, например, как поступают при выращивании кристаллов легкоплавких металлов [5]. Металл расплавляют в стеклянной пробирке с оттянутым концом. Пробирку, подвешенную за нить внутри вертикальной цилиндрической печи, медленно опускают вниз. Оттянутый конец постепенно выходит и охлаждается. Начинается кристаллизация. Сначала образуется несколько кристалликов, но те, которые растут вбок, упираются в стенку пробирки и рост их замедляется. В благоприятных условиях окажется лишь тот кристаллик, который растет вдоль оси пробирки, т. е. вглубь расплава. По мере опускания пробирки новые порции расплава, попадающие в область низких температур, будут "питать" этот единственный кристалл. Поэтому из всех кристалликов выживает он один; по мере опускания пробирки он продолжает расти вдоль ее оси. В конце концов, весь расплавленный металл застывает в виде одиночного кристалла.

Та же идея лежит в основе выращивания тугоплавких кристаллов рубина [4]. Мелкий порошок вещества сыплют струей через пламя. Порошинки при этом плавятся; крошечные капли падают на тугоплавкую подставку очень малой площади, образуя множество кристалликов. При дальнейшем падении капель на подставку все кристаллики растут, но опять-таки вырастает лишь тот из них, который находится в наиболее выгодном положении для "приема" падающих капель.

Как было уже сказано в начале, кристаллы могут образовываться также непосредственно из пара или газа. При охлаждении газа электростатические силы притяжения объединяют атомы или молекулы в кристаллическое твердое вещество. Так образуются снежинки; воздух, содержащий влагу, охлаждается, и прямо из него вырастают снежинки той или иной формы.

Похожие статьи




Понятие кристаллизации насыщенных растворов и способы получения насыщенных растворов, Понятие кристаллизации - Синтез ацетата натрия ("Горячий лед")

Предыдущая | Следующая