Неионогенные ПАВ - Коллоидные поверхностно-активные вещества

Неионогенные ПАВ - высокомолекулярные соединения, не образующие ионов в водном растворе. Их растворимость обусловлена наличием в молекулах гидрофильных эфирных и гидроксильных групп, чаще всего полиэтиленгликолевой цепи. При растворении образуются гидраты вследствие образования водородной связи между кислородными атомами полиэтиленгликолевого остатка и молекулами воды. Вследствие разрыва водородной связи при повышении температуры растворимость неионогенных ПАВ уменьшается, поэтому для них точка помутнения - верхний температурный предел мицеллообразования - является важным показателем. Mногие соединения., содержащие подвижной атом H (кислоты, спирты, фенолы, амины), реагируя с этиленоксидом, образуют неионогенные ПАВ RO (C2H4O)nH. Полярность одной оксиэтиленовой группы значительно меньше полярности любой кислотной группы в анионактивных ПАВ. Поэтому для придания молекуле требуемой гидрофильности и значения ГЛБ в зависимости от гидрофобного радикала требуется от 7 до 50 оксиэтиленовых групп. Характерная особенность неионогенных ПАВ - жидкое состояние и малое пенообразование в водных растворах. Неионогенные ПАВ хорошо комбинируются с другими ПАВ и часто включаются в рецептуры моющих средств.

Неионогенные ПАВ разделяют на группы, различающиеся строением гидрофобной части молекулы, в зависимости от того, какие вещества послужили основой получения полигликолевых эфиров. На основе спиртов получают оксиэтилированные спирты RO(C2H4O)nH; на основе карбоновых кислот - оксиэтилированные жирные кислоты RCOO (C2H4O)n H; на основе алкилфенолов и алкилнафтолов - оксиэтилированные алкилфенолы RC6H4O(C2H4O)nH и соединение RC10H6O--- (C2H4O)nH; на основе аминов, амидов, имидазолинов-оксиэтилированные алкиламины RN[(C2H4O)nH]2, соединение RCONH(C2H4O)nH, соединение формулы III; на основе сульфамидов и меркаптанов - ПАВ типа RSO2NC(C2H4O)nH]2 и RS(C2H4O)nH. Отдельную группу составляют проксанолы - блоксополимеры этилен - и пропиленоксидов НО (C2H4O)x (C3H6O)y (C2H4O)z H, где х, у и z варьируют от нескольких единиц до нескольких десятков, и проксамины (тетро-ники; формула IV) - блоксополимеры этилен - и пропиленокси-дов, получаемые в присутствии этилендиамина. Алкилацетиленгликоли служат основой получения ПАВ типа H(OC2H4)n--OCR'R:CCCR'R''O (C2H4O)nH; эфиры фосфорной кислоты-типа (RO)2P(O)O(C2H4O)nH; эфиры пентаэритрита-типа V. Неионогенными ПАВ являются продукты конденсации гликозидов с жирными спиртами, карбоновыми кислотами и этиленоксидом. Выделяют также ПАВ группы сорбиталей (твинов, формула VI)-продукты присоединения этиленоксида к моноэфиру сорбитона и жирной к-ты. Отдельную группу составляют кремнийорганические ПАВ, например (CH3)3Si [OSi (CH3)2]n--(CH2)3O(C2H4O)mH.

Получение неионогенных ПАВ в большинстве случаев основано на реакции присоединения этиленоксида при повышенной температуре под давлением в присутствии катализаторов (0,1-0,5% CH3ONa, KOH или NaOH). При этом получается средне статическое содержание полимергомологов, в которых молекулярно-массовое распределение описывается функцией Пуассона. Индивидуальные вещества получают присоединением к алкоголятам полигалогензамещенных полиэтиленгликолей. Коллоидно-химические свойства ПАВ этого класса изменяются в широких пределах в зависимости от длины гидрофильной полигликолевой цепи и длины цепи гидрофобной части таким образом, что различные представители одного гомологичного ряда могут быть хорошими смачивателями и эмульгаторами. Поверхностное натяжение гомологов оксиэтилированных алкилфенолов и первичных спиртов при постоянном содержании этиленоксидных групп уменьшается в соответствии с правилом Траубе, т. е. с каждой дополнительной группой CH2 поверхностное натяжение снижается. В оптимальном варианте оно может достигать (28-30)- 10-3 Н/м при критической концентрации мицеллообразования. Мицеллярная масса весьма велика; для твинов, напр., она достигает 1800. Неионогенные ПАВ менее чувствительны к солям, обусловливающим жесткость воды, чем анионактивные и катионактивные ПАВ. Смачивающая способность неионогенных ПАВ зависит от структуры; оптимальной смачивающей способностью обладает ПАВ разветвленного строения:

Оксиэтилированные спирты C10-C18 с n от 4 до 9 и плюроники образуют самопроизвольные микроэмульсии масло/вода и вода/масло. Неионогенные ПАВ хорошо совмещаются с другими ПАВ и часто включаются в рецептуры моющих средств.

Применение в быту и нахождение в природе ПАВ

ПАВ находят широкое применение в промышленности, сельском хозяйстве, медицине, быту. Важнейшие области потребления ПАВ: производство мыл и моющих средств для технических и санитарно-гигиенических нужд; текстильно-вспомогательных веществ, т. е. веществ, используемых для обработки тканей и подготовки сырья для них; лакокрасочной продукции. ПАВ используют во многих технологических процессах химических, нефтехимических, химико-фармацевтических, пищевой промышленности. Их применяют как присадки, улучшающие качество нефтепродуктов; как флотореагенты при флотационном обогащении полезных ископаемых компоненты гидроизоляционных и антикоррозионных покрытий и т. д. ПАВ облегчают механическую обработку металлов и др. материалов, повышают эффективность процессов диспергирования жидкостей и твердых тел. Незаменимы ПАВ, как стабилизаторы высококонцентрированных дисперсных систем (суспензий, паст, эмульсий, пен). Кроме того, они играют важную роль в биологических процессах и вырабатываются для "собственных нужд" живыми организмами. Так, поверхностной активностью обладают вещества, входящие в состав жидкостей кишечно-желудочного тракта и крови животных, соков и экстрактов растений.

Моющие средства. Основное и традиционное применение ПАВ как мыло и чистящих средств в различных процессах чистки изделий. Мыла использовались человеком на протяжении 2000 лет для чистки различных изделий и личной гигиены. С тех пор состав мыла практически не изменился. Сегодня в магазинах можно увидеть мыла различных цветов и ароматов с различными добавками (антиперсперанты и т. д.). Синтетические моющие средства используются для чистки одежды, посуды и прочих вещей в доме. В прошлом такая чистка занимала много времени, требовала больших механических затрат и использования большого количества воды. Современные ПАВ позволяют уменьшить эти затраты и повысить качество чистки. ПАВ обладают дезинфицирующими свойствами и широко используются больницами и поликлиниками вместо обыкновенного мыла.

Косметика. Основное направление использование ПАВ в косметике - заменить натуральные компоненты (масла) на синтетические (растворы и эмульсиии ПАВ) с более низкими токсическими и аллергическими свойствами. Текстильная промышленность. ПАВ используются в основном для снятия статического электричества на волокнах синтетической ткани.

Кожевенная промышленность. Защита кожаных изделий от легких повреждений и слипания

Лакокрасочная промышленность. ПАВ используются для снижения поверхностного натяжения для того чтобы красочный материал мог легко проникнуть в маленькие углубления на поверхности обрабатываемого материала и заполнить их, вытесняя при этом другое вещество из углубления (например, воду).

Бумажная промышленность. ПАВ используются для разделения чернил и вареной целлюлозы при переработке использованной бумаги. Молекулы ПАВ адсорбируются на пигменте чернил. Пигмент становится гидрофобным. Далее воздух пропускается через раствор пигмента и целлюлозы. Пузырьки воздуха адсорбируются на гидрофобной части ПАВ и частички пигмента чернил всплывают на поверхность. См. флотация.

Металлургия. Эмульсии ПАВ используются для смазки прокатных станов. Снижают трение и устойчивы при высоких температурах, тогда как масло сгорает.

Защита растений. ПАВ широко используются в агрономии и сельском хозяйстве для образования эмульсий. ПАВ используются для повышения эффективности транспортировки питательных компонентов в растения через мембранные стенки.

Пищевая промышленность. ПАВ используются в двух случаях: при подготовке упаковки для продуктов, а также для мойки тары. В продуктах ПАВ применяется в мороженом, шоколаде, взбитых сливках и соусах для салатов и других блюд.

Нефтедобыча. ПАВ применяются для гидрофобизации призабойной зоны пласта (ПЗП) с целью увеличения нефтеотдачи.

Строение мицелл ПАВ, солюбилизация:

мицелл

Рис.4.Формы мицелл.

При концентрациях ПАВ в водном растворе, несколько превышающем ККМ, согласно представлениям Гартли образуются сферические мицеллы, их еще называют мицеллы Гартли (см. рис.4). Внутренняя часть их состоит из переплетающихся углеводородных радикалов, полярные молекулы ПАВ обращены в водную среду, такие мицеллы могут содержать по 20 - 100 молекул. При увеличении концентрации ПАВ мицеллярная система проходит ряд равновесных состояний, которые различаются по числу ассоциаций, размерам и форме мицелл. При достижении определенной концентрации сферические мицеллы начинают взаимодействовать между собой и стремятся принять цилиндрическую, дискообразную формы (смотреть рис.4.). Последней стадией агрегации является образование гелеобразной структуры и твердого кристаллического ПАВ. Мицеллы ионногенных ПАВ заряжены, что проявляется в их электрофоретической подвижности. Мицеллообразование в неводных средах - результат действия сил притяжения между полярными группами ПАВ и взаимодействия радикалов с молекулами растворителя. Образующиеся мицеллы обращенного вида содержат внутри полярные группы, окруженные слоем радикалов. Мицеллообразованию в неводных средах может способствовать наличие воды, связывающей полярные группы. Она при этом оказывается внутри мицелл. Избыточное количество воды может привести к обращению структуры мицеллы. Явление растворения веществ в мицеллах ПАВ называют солюбилизацией. Вещество, солюбилизированное раствором ПАВ - солюбилизат, ПАВ - солюбилизатор. Мольная солюбилизация Sm - количество молей солюбилизата, отнесенного к 1 молю мицеллярного ПАВ. Способ включения молекул солюбилизата в мицеллы зависит от природы вещества: неполярные углеводороды располагаются в углеводородных ядрах мицелл, полярные - встраиваются в мицеллу между молекул ПАВ так, чтобы их полярные группы были обращены к воде. Солюбилизация - самопроизвольный процесс. В результате образуются устойчивые дисперсные системы. Солюбилизация - важнейший фактор моющего действия ПАВ, играет большую роль в жизнедеятельности живых организмов, являясь одним из звеньев процесса обмена веществ.

Солюбилизация:

Одним из наиболее характерных свойств мицеллярных растворов ПАВ можно считать их способность растворять нерастворимые в воде вещества. Такое свойство по предложению Мак-Бена получило название "солюбилизация". Поскольку солюбилизация может проявляться не только в водных, но и в неводных растворах, то по определению Мак-Бена, данному им в 1948 г., солюбилизация - это растворение под действием ПАВ нерастворимых в данной жидкости веществ. Процесс солюбилизации можно рассматривать как распределение труднорастворимого вещества между истинным раствором и мицеллами ПАВ. Очевидно, что абсолютно нерастворимые вещества не будут и солюбилизироваться, так как их переход от частиц или капель в мицеллы должен происходить через молекулярный раствор. Для водных растворов характерна солюбилизация маслоподобных гидрофобных веществ - углеводородов, дисперсных красителей и др. веществ, которые хорошо растворяются в углеводородных жидкостях и трудно растворяются в воде. Для растворов ПАВ в неполярных растворителях характерна солюбилизация воды и водных растворов различных веществ. Подобные коллоидные растворы аналогичны высокодисперсным эмульсиям прямого (м/в - "масло в воде") и обратного (в/м - "вода в масле") типов. Однако, в отличие от эмульсий, которые представляют собой грубодисперсные системы с четко выраженной поверхностью раздела фаз, обладают избыточной поверхностной свободной энергией и требуют для своего получения затраты работы, мицеллярные растворы ПАВ с солюбилизированным веществом обладают термодинамической устойчивостью, хотя и являются двухфазными системами. Следует отметить, что такие системы представляют собой классический пример лиофильных коллоидных систем, которые образуются самопроизвольно, избыток свободной поверхностной энергии в которых столь мал, что поверхность раздела фаз не выражена четко и некоторый рост при образовании мицелл компенсируется изменением энтропии системы. Практические аспекты применения явления солюбилизации необычайно широки. Здесь можно отметить, что в текстильной промышленности это, прежде всего, повышение растворимости дисперсных и кубовых красителей в воде, что необходимо для качественного осуществления процесса колорирования с применением таких красителей. Особенно важно явление солюбилизации в фармакологии, когда ряд лекарственных веществ переводят именно в солюбилизированное состояние. В 1946 г. А. И. Юрженко установил, что процесс эмульсионной полимеризации в технологии производства полимерных материалов зарождается и протекает именно в мицеллах ПАВ с последующим образованием дисперсии полимера-латекса. Углеводород - мономер - солюбилизируется, и затем уже внутри мицелл протекает процесс полимеризации. Образовавшаяся частичка полимера стабилизируется молекулами или ионами ПАВ и образуется устойчивый латекс синтетического полимера. Такое применение солюбилизации является наиболее широким. Солюбилизация водонерастворимых веществ происходит и в организме человека и многих животных, что обеспечивает транспорт таких веществ по кровеносной системе между различными частями организма.

    1 - С11H23(OC2H4)7OH; 2 - C14H29(OC2H4)6OH; 3 - C10H21(OC2H4)5OH

Рис.5. Изотерма солюбилизации красителя оранжевого-ОТ растворами неионогенных ПАВ:

Изотермы солюбилизации чаще всего имеют вид, приведенный на рис 5. Это - кривая, не проходящая через начало координат, так как солюбилизация возможна только после образования мицелл. Солюбилизацию выражают либо по аналогии с растворимостью как количество вещества в единице объема раствора ПАВ, т. е. моль/л, либо относят к одному молю мицеллярного ПАВ (тогда говорят о молярной солюбилизации, ее размерность будет моль солюбилизата/моль ПАВ). Последнее выражение солюбилизации позволяет проследить за мицеллярными переходами, так как солюбилизационная емкость меняется при трансформации формы мицелл, например, от сферической к сфероцилиндру и затем к пластинчатым (ламеллярным) мицеллам.

Для описания изотермы солюбилизации Волков предложил уравнение:

S = (n / m) (с-скрит) (1)

Где S - солюбилизация, выраженная, моль/л;

N - средняя солюбилизационная емкость мицелл (число солюбилизированных молекул в одной мицелле);

M - число агрегации мицелл (среднее число молекул ПАВ в мицелле).

При n/m = const изотерма принимает линейный вид. Если n/m - const, то изотерма солюбилизации отклоняется от линейности. Молярная солюбилизация изменяется скачкообразно при переходе от одной формы мицелл к другой. Типичная зависимость молярной солюбилизации от концентрации раствора ПАВ приведена на рис. 6.

изотерма молярной солюбилизации (схема)

Рис. 6. Изотерма молярной солюбилизации (схема).

Отметим, что солюбилизация начинает проявляться только после того, как в растворе ПАВ образуются первые мицеллы. После этого в определенной, подчас узкой, области концентраций молярная солюбилизация растет вследствие того, что в этой области концентраций увеличивается как число мицелл, так и их размер. После завершения формирования сферических мицелл (точка А) молярная солюбилизация остается постоянной вплоть до той концентрации, когда при второй критической концентрации мицеллообразования скрит2сферические мицеллы не начнут перестраиваться в сфероцилиндрические, у которых солюбилизационная емкость выше, чем у сферических мицелл. После завершения образования таких мицелл (точка В) их солюбилизационная емкость также остается постоянной в некоторой области концентраций до тех пор, пока эти мицеллы не начнут перестраиваться в ламеллярные при третьей критической концентрации мицеллообразования. В слоистых мицеллах нет предела солюбилизации, так как солюбилизированное вещество располагается между слоями ПАВ в области их углеводородных радикалов, где может располагаться неограниченное количество солюбилизата. Таким образом, измерение солюбилизации и выражение в молярных единицах позволяет определять как первую критическую концентрацию мицеллообразования, так и 2-ю и 3-ю ККМ, характеризующие переход от одной формы мицелл к другой. Величина солюбилизации зависит от химической природы ПАВ - длины углеводородного радикала, замещения атомов водорода в углеводородной цепи другими атомами и группами атомов, характера углеводородного радикала (линейный, разветвленный, содержащий бензольный или нафталиновый циклы и т. д.), природы, положения и числа гидрофильных групп. В первую очередь эти факторы оказывают влияние на размер мицелл - их числа агрегации, объем внутренней углеводородной части или периферийной полярной области мицелл. Чем больший внутренний объем имеет мицелла, тем больше способность данного ПАВ к солюбилизации гидрофобных веществ. Обычно соединения с разветвленной углеводородной цепью обладают значительно большей солюбилизирующей способностью, чем алифатические соединения с эквивалентной длиной цепи. Введением в растворы ПАВ различных добавок, способных изменить размер мицелл, например, солей (электролитов), низших и высших спиртов и т. д., можно регулировать солюбилизирующую способность. Введением низших спиртов можно произвести даже инверсию фаз, аналогично тому, как это происходит в эмульсиях. За этим превращением можно наблюдать, измеряя, например, электрическую проводимость растворов ионогенных ПАВ. Повышение температуры обычно способствует солюбилизации, хотя известны случаи более сложного влияния температуры на солюбилизацию, особенно в растворах неионогенных ПАВ.

Эмульгаторы:

Эмульгаторы -- поверхностно-активные вещества, способствующие образованию эмульсий. Для стабилизации эмульсий используют поверхностно-активные вещества. Для этой же цели применяют соединения других типов, например дифильные полимеры, небольшие твердые частицы и др. Поверхностно-активные вещества используют также при получении эмульсий, т. е. для тонкого диспергирования масла в воде или воды в масле. Для этого необходимо выполнение двух условий: ПАВ должно понижать межфазное натяжение до низких значений и должно быстро диффундировать к вновь возникающей межфазной поверхности. Последнее условие особенно важно; только в том случае, если новая межфазная поверхность быстро покрывается монослоем ПАВ, она будет устойчивой по отношению к коалесценции. Высокомолекулярные полимеры, гидрофобные частицы, белки в изоэлектрической точке и жидкие кристаллы способны эффективно стабилизировать межфазную границу масло-вода. Но эти крупные частицы медленно диффундируют к возникающей межфазной поверхности. Для создания эмульсий лучше использовать низкомолекулярные ПАВ. Другие упомянутые компоненты выполняют более значимую роль в стабилизации системы. Поверхностно-активные вещества, добавляемые в систему для образования эмульсий, называют "эмульгаторами".

Похожие статьи




Неионогенные ПАВ - Коллоидные поверхностно-активные вещества

Предыдущая | Следующая