Прием спутниковой информации - Космические средства дистанционного зондирования Земли

Станции для приема информации со спутников на Земле (называмые земными) содержат антенну с опорно-поворотным устройством (ОПУ), радиоприемное устройство и средства обработки, хранения И отображения информации (рис. 13).

Наиболее употребительные зеркальные антенны с параболическим рефлектором наводятся ОПУ на спутник по командам компьютера, в который заложены орбитальные данные. В фокусе антенны уставлен облучатель, сигнал с которого усиливается малошумяшим усилителем (МШУ). Далее сигнал по кабелю Поступает на приемник, цифровой сигнал с выхода которого обрабатывается на компьютере.

станция для приема информации с природоведческих спутников

Рис. 13 - Станция для приема информации с природоведческих спутников

Наиболее дорогостоящей частью станции является антенна с ОПУ. Чаще всего используются ОПУ с азимутально-угломестной подвеской антенны, позволяющие разворачивать ее на ± 180° по горизонтали и на 90° по углу места, отсчитываемому от горизонта к зениту. Азимуально-угломестная подвеска обладает принципиальным недостатком: в области углов места, примыкающих к зениту, образуется "мертвая зона", в пределах которой невозможно обеспечить связь со спутником. Это объясняется тем, что с ростом угла места ш требуемая угловая скорость вращения антенны вокруг вертикальной оси возрастает, стремясь к бесконечности при ш >90°. Поскольку реальная скорость поворота антенны конечная, то, начиная с некоторого значения угла места, луч антенны отстанет от перемещения спутника, и сопровождение срывается. Таким образом, когда спутник близок к зениту, такой вид подвески не позволяет качественно принимать изображения той местности, где находится станция.

Для устранения "мертвой зоны" при прохождении спутника через зенит можно ввести в ОПУ третью ось. Однако в этом случае конструкция ОПУ резко усложнится. Во избежание этого можно сохранить двухосное поворотное устройство, но разместить ортогональные оси так, чтобы "мертвая зона" находилась в наименее существенной для поддержания связи части небесной полусферы, например ближе к горизонту.

При выборе конструкции антенны приходится учитывать различные факторы, в частности особенности распространения радиоволн на трассе Земля-космос. Для передачи сигналов с природоведческих спутников чаще всего используют радиоволны дециметрового и сантиметрового диапазонов или соответственно частоты 300 МГц-30 ГГц. В этом частотном диапазоне отдельные полосы переуплотнены различными радиослужбами. Так, полоса 300 МГц-10 ГГц интенсивно используется наземными радиостанциями. При этом повышается уровень взаимных помех, снижается качество радиосвязи.

При прохождении радиоволн сквозь атмосферу Земли приходится учитывать влияние тропосферы (0-11 км) и ионосферы (выше 80 км), поскольку в указанном интервале частот они несколько затухают в атмосферных газах и осадках. При этом изменяется поляризация волны, возникают дисперсионные искажения.

При прохождении через ионосферу линейно-поляризованные (в частности, горизонтально и вертикально поляризованные) радиоволны расщепляются на два эллиптически поляризованных компонента (обыкновенный и необыкновенный), которые распространяются с разной скоростью из-за влияния магнитного поля Земли. В результате сложения этих компонентов в точке приема плоскость поляризации результирующей волны будет повернута на некоторый угол (эффект Фарадея), зависящий от электронной концентрации Тe в ионосфере и напряженности геомагнитного поля Н вдоль пути радиоволн в ионосфере. Для него характерна регулярная зависимость от времени суток, сезона и фазы цикла солнечной активности, а также случайные изменения, связанные с геомагнитными бурями и нерегулярными ионосферными неоднородностями. На частоте 1 ГГц угол поворота лежит в пределах 1-100° и уменьшается с ростом частоты как I/f2. Эффект поворота плоскости поляризации учтен в конструкции антенны: выбираются антенны и облучатели, способные принимать сигналы с круговой поляризацией, например спиральные антенны и спиральные облучатели.

При прохождении через ионосферу широкополосные сигналы искажаются, поскольку время распространения составляющих его спектра будет различно. Это явление, известное как относительная дисперсия, характеризуется разностью задержек между нижней и верхней частотами спектров сигналов, распространяющихся через ионосферу.

Относительная дисперсия зависит от Nc и Н и. обратно пропорциональна f3, на частоте 1 ГГц может иногда достигать 0,4 нс/МГц и приводить к искажению сигналов, при полосе частот 100 МГц это 0,4 мкс.

Мощность сигнала в месте приема может быть оценена из следующих соображений. Если L-расстояние между передатчиком и приемником, Рпер-мощность передатчика, то при условии, что излучение энергии происходит равномерно по всем направлениям (изотропный излучатель), вся энергия распределяется по площади сферы радиусом L, равной 4рL2 Мощность, приходящаяся на 1 м2, т. е. плотность потока мощности,

П = Pnep/4рL2.

Реально спутник передает информацию только в нижнюю полусферу, в сторону Земли. Поэтому приведенное выражение следует умножить на так называемый коэффициент направленного действия антенны (КНД) D?1-отношение плотности потока мощности, излучаемой антенной в направлении максимума ее диаграммы направленности (см. рис. 1.11 и 1.13), к плотности потока мощности, которая излучалась бы Изотропным излучателем, при условии равенства общей излучаемой Мощности. КНД связан с площадью апертуры S и длиной волны л соотношением D = 4рS/л2. Если излучение происходит равномерно во всех направлениях в нижнюю полусферу, то D=2. На природоведческих спутниках обычно устанавливают передающие антенны с D=3~4, что позволяет земным станциям принимать информацию практически с любых направлений - от горизонта до горизонта. Таким образом,

П=PперD/4рL2,

Приемная антенна - это барьер, поглощающий поток энергии, Изучаемый передающей антенной. Пусть площадь апертуры приемной антенны равна S. Если пренебречь потерями в приемной антенне, ТО мощность сигнала на ее выходе

Pпр=SП=SPперD/4рL2,

В это выражение в явном виде не входит КНД приемной антенны, но с ростом S увеличивается отношение S/л2, увеличивается D и сужается диаграмма направленности. В результате снижается уровень помех и шумов, которые могут поступать в антенну с боковых направлений. Однако слишком узкая диаграмма направленности требует большой точности наведения антенны.

Пусть радиус апертуры приемной параболической антенны r=60 см: Pпер =5,5 Вт; D= 3; 870 км < L < 3400 км. Площадь апертуры антенны S=рr 2 =1,13 м2, при л=17,6 см ее КНД около 400, ширина диаграммы направленности по ее первому минимуму, определяемая согласно (1.7) как 0,61л/r около 10°. Эти реальные числа соответствуют мощности передатчика спутника NOAA, минимальному и максимальному расстоянию L от спутника до приемной станции, размеру антенны станции HRPT для приема информации с этого спутника. Расчет по формуле дает максимальное значение Pпр = 2-10-12 Вт, минимальное значение Pпр = 10-13 Вт. Современная радиотехника позволяет усиливать и более слабые сигналы, но при этом усиливаются также внешние по мехи и шумы и внутренние шумы радиоустройств.

Источниками внешних шумов в микроволновом диапазоне могут быть различные наземные радиопередатчики, существуют шумы и космического происхождения. Источником внутренних шумов радио устройств прежде всего является дискретная природа электричества, так как электрический ток-это поток дискретных частиц-электронов.

Интенсивность шума принято описывать следующим образом. Все источники внешних и внутренних шумов заменяются эквивалентным источником шума в виде некоторого активного сопротивления (резистора). Известно, что на зажимах резисторов из-за хаотического теплового движения электронов возникает разность потенциалов, изменяющаяся случайным образом. Средняя мощность такого шума (его называют тепловым) описывается формулой Найквиста; P=4kTДf, где к=1,38-10-23 Дж/град - постоянная Больцмана, Г-температура резистора, Дf-полоса частот, в пределах которой измеряется средняя мощность шума. Если входное сопротивление приемника равно входному сопротивлению антенны (т. е. приемник и антенна согласованы), то эквивалентная мощность шума

Рш = кТшДf.

В нашем случае Дf-ширина полосы пропускания приемника, равная, в свою очередь, ширине полосы частот, необходимой для передачи информации со спутника, Тш-эквивалентная шумовая температура антенны и приемника, не совпадающая с термодинамической температу рой, при которой находятся антенна и приемник. На прием сигналон с природоведческих спутников сильнее всего влияют внутренние шумы, и в первую очередь шумы первых каскадов усилителя радиосигналов. Поэтому во входных каскадах применяют малошумящие усилители (МШУ), которые конструктивно обычно совмещают с преобразоватечем несущей частоты сигнала в более низкую и помещают непосредственно в облучателе антенны. Современные МШУ имеют в микроволновом диапазоне Тш, порядка 40-70 К.

Пусть Тш= 70 К, Дf =2 МГц, что соответствует условиям приема сигналов со спутника NOAA. В этом случае Рш = 2-0-15 Вт, что на 2-3 порядка меньше мощности сигнала.

Мощность сигнала при прочих равных условиях определяется размерами антенны и ее КНД, средняя мощность шума - шумовой температурой. Отношение мощности сигнала к средней мощности шума (отношение сигнал/шум) является важнейшей характеристикой качества приема и зависит, таким образом, от отношения КНД антенны к шумовой температуре. Эту величину D/ Тш называют коэффициентом качества антенны. В рассмотренном примере коэффициент качества равен 5,7.

Выбор размеров приемной антенны определяется требованиями к коэффициенту качества и в конечном итоге - шириной полосы частот, необходимой для передачи информации со спутника. Последняя зависит от скорости передачи информации С. Для вычисления С необходимо знать параметры сканирующего устройства и скорость перемещения подспутниковой точки V3 по Земле. Если разрешение сканера вдоль направления движения спутника равно ДL, то в секунду считывается информация с V3/ДL строк. Пусть I - число бит, которое используется для записи яркости каждого пиксела, п-число спектральных каналов, К-коэффициент, зависящий от типа применяемого при передаче информации помехоустойчивого кодирования, K>2, N - число пикселов в строке, связанное с шириной полосы обзора G соотношением N=G/ДL. Тогда

С= V3NIKn/ДL= V3GIKn/ДL2

Например, для ДL= 1,1 км, V3= 6,56 км/с, G = 1670 км, I= 10 бит, п=5, К=1 скорость передачи информации С=500 кбит/с. Если ДL=100 м, что было бы очень желательно, то при тех же условиях С=50 Мбит/с. Улучшение пространственного разрешения приводит к увеличению информационного потока, который обратно пропорционален квадрату разрешения.

Полоса частот Дf, необходимая для передачи информации со спутника, зависит от вида модуляции высокочастотного колебания и ориентировочно равна (3-3,5)С. Для первого примера Дf= 1,5 МГц, для второго Дf? 150 М Гц. Очевидно, что при прочих равных условиях средняя мощность шума для второго примера на два порядка выше. Чтобы сохранить необходимое отношение сигнал-шум, требуется увеличить площадь антенны и ее КПД в 100 раз, а диаметр антенны - в 10 раз. Таким образом, если при скорости передачи в 500 Кбит/с, пространственном разрешении 1,1 км и полосе обзора 1670 км можно применять антенну диаметром 1 м, то при скорости передачи 55 Мбит/с, пространственном разрешении 100 м с сохранением той же полосы обзора - антенну диаметром 10 м.

Типичная земная станция HRPT для приема информации со спутников NOAA имеет параболическую антенну диаметром 1,2-1,5 м. В фокусе антенны установлен облучатель, сигнал с которого усиливается МШУ, а несущая частота сигнала преобразуется в более низкую. МШУ имеет Тш=60-80 К. Далее сигнал по кабелю поступает на приемник, который иногда оформлен в виде платы, вставляемой в персональный компьютер. Цифровой сигнал с выхода приемника обрабатывается на компьютерах. Обработка включает в себя секторизацию, т. е. "вырезание" из всего спутникового изображения интересующего участка, например размером 512x512 пикселов, лежащего вблизи надира. Далее выполняются геометрическая коррекция изображения и топографическая привязка его к карте, а также коррекция атмосферных искажений. Секторизованное и скорректированное изображение готово для дальнейшей обработки, целью которой обычно является улучшение качества изображения, распознавание объектов на изображении, определение их координат и других геометрических характеристик.

Похожие статьи




Прием спутниковой информации - Космические средства дистанционного зондирования Земли

Предыдущая | Следующая