Легкие бетоны - Виды бетона

Расчет составов легких бетонов направлен на предварительное определение расходов входящих в них компонентов, обеспечивающих при заданных условиях твердения достижение нормируемых показателей. Во всех случаях проектирование составов легких бетонов наряду с прочностью при сжатии должно обеспечивать их заданную плотность.

Проектирование составов легких бетонов может производиться:

    1) при заданных видах крупного и мелкого заполнителей с известными значениями их плотности; 2) при заданном виде и плотности крупного пористого заполнителя с возможным выбором вида песка; 3) с выбором, как крупного, так и мелкого заполнителей.

Выбор марки цемента производится с учетом рекомендаций. В соответствии с ними при данном классе бетона эффективность повышения марки цемента тем больше, чем ниже средняя плотность бетона и меньше прочность крупного пористого заполнителя.

Выбор крупного пористого заполнителя производится на основе эмпирических данных, связывающих его насыпную плотность с плотностью и прочностью бетона (Rб).

Минимально возможная плотность крупного пористого заполнителя определяется из условия достижения заданной прочности бетона в зоне эффективных составов (первый участок кривой

Rб=f(Rр), где Rр -

Прочность раствора).

Известно, в частности, что для плотного легкого бетона максимальное отношение рекомендуется при до 800 кг/м 3 - 0,40, 800...1100 кг/м 3 - 0,45, 1200...1400 кг/м 3 - 0,50, 1400...1800кг/м 3 - 0,55.

Вид песка, характеризуемый плотностью его зерен, зависит от требуемой плотности растворной составляющей, а последняя от необходимой плотности бетона.

Предлагаемые ниже алгоритмы расчета составов легких бетонов, основаны на сформулированных в разделе 4 правиле "приведенного Ц/В" и соответствующих расчетных зависимостях прочности бетонов, учитывающих как Ц/В так и объем пор, образованных пористыми заполнителями и вовлеченным воздухом. Линейная зависимость прочности легких бетонов от приведенного Ц/В сохраняется в области эффективных составов, когда крупный заполнитель работает совместно с растворной составляющей, т. е. в пределах первой фазы кривой прочности бетона в зависимости от прочности входящего в него раствора (по А. И. Ваганову).

Традиционные методики проектирования составов легких бетонов основаны на предварительном назначении расхода цемента и объемной концентрации пористого заполнителя на основе эмпирических данных, учитывающих прочность и плотность бетона, подвижность бетонной смеси, плотность и прочность заполнителей. С этой целью могут быть использованы как табулированные справочные данные, так и соответствующие уравнения регрессии.

Расчет составов легких бетонов методом "приведенного Ц/В" предполагает определение параметра Z из уравнения, а затем последовательное определение необходимых расходов крупного и мелкого заполнителей, вовлеченного воздуха, воды и цемента.

Жаростойкие бетоны. Чаще всего применяются при возведении промышленных объектов и агрегатов: при футеровке печей, облицовке котлов, при возведении дымовых труб ТЭЦ, в металлургическом производстве и т. д. При воздействии сверхвысоких температур в структуре бетона происходит ряд химических процессов, результатом которых становится обезвоживание кристаллогидратов и разложение гидроскида кальция, в результате реакции образуется СаО (оксид кальция). По мере остывания, влага снова приникает в объем бетона и оксид кальция гидратируется с резким увеличением объема, структура бетона при этом разрушается, образуются многочисленные трещины. Наиболее эффективное средство предотвращения такого сценария - приготовление раствора бетона на тонкоизмельченных материалах с добавлением активного кремнезема.

В качестве Огнеупорных бетонов применяются различные составы. Большое распространение получили бетоны на основе портландцемента с активными минеральными добавками (пемза, доменные гранулированные шлаки, зола). Целесообразно использование шлакопортландцемента, который изначально содержит некоторые из перечисленных добавок. Компоненты такого бетона широко распространены, что положительно сказывается на стоимости. С другой стороны, использование портландцементов в качестве жаростойких связано с некоторыми ограничениями. Во-первых, предел температуры, которую способен переносить такой бетон - 700°C. Во-вторых, бетоны на основе портландцементов подвергаются кислотной коррозии (источником которой может стать сернистый ангидрит в дымовых трубах).

Бетоны на жидком стекле напротив отлично переносят воздействие кислот. Их температурный предел достигает 1000°С.

Высокоглиноземный цемент также может использоваться при производстве жаропрочного бетона. Содержание глинозема в таком бетоне должной быть не ниже 65% (лучше 80%), также рекомендуется уделять внимание материалу заполнителя. Бетон на высокоглиноземном бетоне может выдержать до 1580°С, а при использовании огнеупорного заполнителя - до 1700°С.

Отлично зарекомендовали себя бетоны на основе фосфатных связующих. Помимо высокого температурного предела (1700°С) они имеют высокую устойчивость к истиранию. Следует учитывать небольшую усадку этих бетонов после первого прокаливания.

Большое значение при производстве огнеупорного бетона имеет заполнитель. При этом важна равномерность температурного расширения заполнителя во всем объеме конструкции.

При температуре менее 700°С допустимо использовать бескварцевые и пористые горные породы (габбро, сиенит, диорит, пемзу и ли туфы).

При расчете на температурный потолок до 900°С в качестве крупного заполнителя выступают стабильные доменные шлаки или бой глиняного кирпича.

Специализированные огнеупорные материалы входят в состав наиболее стойких бетонов, рассчитанных на температуру до 1700°С. Крупным заполнителем в таких бетонах является хромированная руда, бой шамотных, хроммагнезитовых и прочих огнеупорных изделий.

Кислотоупорный бетон. Наиболее популярным вяжущим веществом при производстве кислотоупорных бетонных смесей является жидкое стекло (силикат натрия или калия) в сочетании со специальными отвердителями (кремнефтористый натрий). Для повышения плотности в состав смеси вводятся минеральные порошки (молотый андезит, базальт, кварц и другие измельченные кислотостойкие породы). В качестве мелкого заполнителя применяются кварцевые пески, крупный заполнитель - гранитный щебень.

Технология укладки кислотостойкого бетона несколько сложнее в сравнении с обычными цементными бетонами. Сначала отвердитель смешивается с минеральным порошком, затем вводятся заполнители, последним добавляется вяжущее. Твердение должно происходить в теплой и сухой воздушной среде (не ниже 10°С), желательно смесь прогреть при температуре не менее 80°С в течении 5-8 часов. Рекомендуется окислить конструкцию после окончательного затвердения - смочить раствором соляной или серной кислоты.

Примерные составляющие кислотоупорного бетона

Составляющие Кислотоупорный бетон на жидком стекле, кг/м 3 Кислотоупорный бетон на жидком стекле с полимерными добавками (силикатполимербетон), кг/м 3

Состав 1 состав 2 состав 1 состав 2 состав 3 состав 4

Щебень фракций, мм:

Андезитовый 5-10 370 150 160-200 170 - -

Кварцевый 10-20 680 300 280-320 340 - -

Гранитный 20-40 - 660 520 510 800 1200

Песок кварцевый фракции 0,15-5 мм 525 525 630 560 600 570

Тонкомолотый наполнитель - андезитовая мука (тонкого помола менее 0,15) 525 525 400 500 400 360

Жидкое стекло

Удв. 1,4 - 1,42Ч104 Н/м 3 300 300 230-250 215 300 280

Кремнефтористый натрий 45 45 35-37 31 50 42

Фуриловый спирт - - 8-14 - 10 8,4

Полимерный компаунд - - - 13 - -

Сульфенол - - - - - 0,56

ГКЖ 10(11) - - - - 2 -

Катапин - - - - - 0,84

При правильном подборе компонентов, кислотоустойчивые бетоны могут достигать по прочности на сжатие 200 кг/смІ. Правильно приготовленный кислотоупорный бетон стоек к воздействию концентрированных кислот (кроме НF), а вот вода способна привести изделие из такого бетона в негодность в течение 5-10 лет, щелочные растворы справятся с этой задачей еще быстрее.

В промышленности кислотоупорные бетоны применяются как альтернатива более дорогим материалам: свинцовым пластинам, тесанному природному камню, кислотоупорной керамике. Применяется для защиты конструкций и сооружений от воздействия агрессивных сред, часто металлические и железобетонные конструкции покрываются слоем кислотоупорного бетона. Привычная сфера применения - строительство емкостей и резервуаров в химической промышленности, из кислотостойкого бетона изготавливается специализированная облицовочная плитка.

Бетон, предназначенный для защиты от радиоактивного воздействия. Как и все виды бетонов, ориентированных на возведение защитных конструкций, он должен обладать высокими показателями по прочности (не только на сжатие, но и на растяжение). Также важны высокая плотность и содержание водорода (в виде воды, связанной с вяжущим).

В качестве вяжущего для бетонов этого класса себя превосходно зарекомендовал портландцемент (допустимо применение шлакопортландцемента). Учитывая, что конструкции для защиты от излучения компактными не бывают, необходимо чтобы используемый цемент выделял как можно меньше тепла при твердении.

На роль заполнителя в этом случае претендует широкий список тяжелых материалов, точный состав устанавливается специалистами при расчете каждой индивидуальной конструкции. Для особенно тяжелых растворов заполнителем могут служить насыщенные железные руды (магнетит или гематит с содержанием Fe не менее 60%). Если необходимо повысить содержание связанной воды в составе, используется бурый железняк (лимонит). В качестве мелкого заполнителя могут фигурировать баритовые руды или барит (содержание сульфата бария не менее 80%).

Нередко применение металлических заполнителей - лимонитового или кварцевого песка, а также чугунной и свинцовой дроби. Свинцовая дробь дорогая, применяется чаще всего при заделке отверстий в конструкциях и на участках, где требуется повышенная защищенность. Плотность бетона на металлическом заполнителе доходит до 6000 кг/мі.

Эксплуатация бетонных защитных сооружений сопряжена с воздействием высоких температур. Неравномерный прогрев вызывает напряжения внутри конструкции, чтобы сдерживать их используемый бетон должен иметь высокую марку по прочности на растяжение, а вот усадку напротив минимальную. Бетонные конструкции, расположенные в непосредственной близости от работающего ядерного реактора должен обладать большим потенциалом жаропрочности, поскольку функционирование реактора в аварийном режиме сопряжено с выделением экстремальных температур.

Похожие статьи




Легкие бетоны - Виды бетона

Предыдущая | Следующая