Основные источники энергии, понятие о качестве энергии и негэнтропии - Эволюция и основные проблемы естествознания

За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан. Солнце светило и обогревало человека всегда, и тем не менее однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного "корма". Но и это был лишь этан. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти. И вот новый виток: в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. В этой связи нефть и газ будут с каждым годом стоить все дороже.

Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники. Запасы урана в сравнении с запасами угля вроде бы не столь уж и велики. Но зато на единицу массы уран содержит в себе энергии в миллионы раз больше, чем уголь. А итог таков: при получении электроэнергии на АЭС нужно затратить намного меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю... Всегда было так: следующий источник энергии был более мощным.

В погоне за избытком энергии человек все глубже погружаются в стихийный мир природных явлений, и до какой-то поры не очень задумывался о последствиях своих дел и поступков. Однако времена меня-ются. Сейчас, на рубеже тысячелетий начинается новый, этап земной энергетики. Появилась энергетика "щадящая", построенная так, чтобы человек не рубил сук, на котором сидит, заботился об охране уже сильно поврежденной биосферы. Несомненно, в будущем одновременно с интенсивным развитием энергетики получит широкие права гражданства и экстенсивное направление: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким кпд, экологически чистые, удобные в обращении. Яркий пример тому -- быстрый старт электрохимической энергетики, которую, видимо, дополнит энергетика солнечная.

Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идеи, изобретения, достижения естествознания. Это и понятно: энергетика связана буквально со всем, и все тянутся к энергетике, зависят от нее. Энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, кварках, "черных дырах", вакууме, -- это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать завтрашним днем энергетики.

Второе начало термодинамики определяет важную тенденцию в эволюции физического мира -- с течением времени в замкнутой изолированной системе энтропия должна возрастать. В результате энергии распределяются по рангам так, что высший занимают те, которые способны превратиться в большее число видов энергии.

Тогда низший ранг останется теплоте, превращения которой ограничены принципом Карно. Из энергий, встречающихся в физике и химии, высший ранг име-ют механическая и электрическая энергии, промежуточный -- химическая энергия (из-за тепловых явлений, сопровождающих химические реакции).

Психологически удобно, поскольку наш ум привык негативно воспринимать потерю чего-либо, пользоваться величиной, равной энтропии, но с обратным знаком, которую предложил ввести Шредингер. Один из творцов теории информации французский физик Леон Бриллюэн (1889--1969) назвал ее негэнтропией:

N =- S.

Негэнтропия представляет качество энергии, а принцип Карно выражает закон обесценивания энергии, ее деградации. Система, способная производить механическую работу (сжатая пружина, заряженная батарея, поднятый над Землей груз), может рассматриваться как источник негэнтропии, и, совершая работу, она теряет ее запас.

Энтропия связана с вероятностями:

S = k InW

Здесь W выражает число микросостояний, определяемое квантовыми законами. Рассмотрим, например, некоторую сложную систему и проследим ее эволюцию. Эта неустойчивая структура начнет разрушаться, переходя во вес более вероятные и устойчивые состояния. Энтропия при этом, как и вероятность, будет расти. Пусть эта система представляет собой находящийся в сосуде газ, состоящий из огромного числа беспрерывно движущихся молекул. Мы не знаем точного положения, и скорости в каждый момент времени каждой частицы газа. Нам могут быть известны только макропараметры: давление, объем, температура и состав газа. Эти величины можно измерить, вычислить энтропию системы и число "микроскопических комплексий", как называл число микросостояний Планк. Формула, приведенная выше, связывает энтропию с хаосом. Слева стоит ключевое понятие второго начала термодинамики, характеризующее любые самопроизвольные изменения системы, а справа -- величина, связанная с хаосом и служащая мерой рассеяния энергии, ее деградации во Вселенной. В чем смысл "микроскопических комплексий"?

Фактически мы должны рассчитать число способов, которыми можно осуществить внутренние перестройки в системе, чтобы наблюдатель не заметил изменений, или чтобы они не изменили характеристики микросостояния системы. При этом предполагается неотличимость атомов друг от друга.

Если в системе, состоящей из одного атома, произошло его энергетическое возбуждение, нам может быть об этом известно по значе-нию температуры. При этом возможно только одно распределение возбуждения в системе, W = 1, логарифм единицы равен нулю, и S = 0. Такой локализованный сгусток энергии обладает нулевой энтропией, или идеальным качеством. Если возбуждение передается по системе, и мы не можем отличить, какому именно атому, то в системе из ста атомов это может быть осуществлено ста способами, т. е. W=100, In 100 = 4,61, отсюда и S = 4,61k. Итак, энтропия системы выросла, система стала хаотичной, поскольку мы не знаем, где находится в каждый момент возбужденный атом.

Следует обратить внимание на то, что в формулу Больцмана входит медленно меняющаяся функция, и, если In 100 = 4,61 и In 1500 = 7,31, то логарифм от числа Авогадро равен всего 54,7 или In 1023 = 54,7.

Если система может быть представлена в виде двух взаимодействующих подсистем, то максимум энтропии достигается, когда обе подсистемы приходят в тепловое равновесие. При отсутствии перехода энергии из одной подсистемы в другую такое состояние может долго существовать, нарушаемое только флуктуациями. Но тепловое равновесие -- равновесие динамическое: в его основе лежит непрерывное движение, не воспринимаемое внешним наблюдателем.

Это состояние, соответствующее максимуму энтропии, может быть достигнуто максимальным числом способов, и чем большим числом способов оно достигается, тем выше его вероятность. Если эти перестановки на микроуровне совершал демон Больцмана, то он в силу своих хаотических действий не сможет распутать возникший беспорядок и вернуться в прошлое. Конечно, с очень малой вероятностью может произойти и невероятное: например, или газ скопится в одной части сосуда, или молекулы воды перестроятся так, что получится вино. Как выразился философ Давид Юм, "всегда более вероятно то, что рассказчик введен в заблуждение, чем то, что чудо действительно произошло".

Похожие статьи




Основные источники энергии, понятие о качестве энергии и негэнтропии - Эволюция и основные проблемы естествознания

Предыдущая | Следующая