Cатистические и термодинамические свойства макросистем - Эволюция современного естествознания

Развитие представлений в природе тепловых явлений.

Вокруг нас происходят явления, внешне весьма косвенно связанные с механическим движением. Это явления, наблюдаемые при изменении температуры тел, представляющих собой макросистемы, или при переходе их из одного состояния (например, жидкого) в другое (твердое либо газообразное). Такие явления называются тепловыми. Они играют огромную роль в жизни людей, животных и растений. Изменение температуры на 20-30°С при смене времени года меняет все вокруг нас. С наступлением весны природа преображается, леса и луга зеленеют. От температуры окружающей среды зависит возможность жизни па Земле. Люди добились относительной независимости от окружающей среды, после того как научились добывать и поддерживать огонь. Это было одним из величайших открытий, сделанных на заре развития человечества.[2]

Эволюция представлений о природе тепловых явлений - пример того, каким сложным и противоречивым путем постигают научную истину. Многие философы древности рассматривали огонь и связанную с ним теплоту как одну из стихий, которая наряду с землей, водой и воздухом образует все тела. Одновременно предпринимались попытки связать теплоту с движением, ибо было замечено, что при соударении тел или трении их друг о друга они нагреваются.

Первые успехи на пути построения научной теории теплоты относятся к началу XVII в., когда был изобретен термометр и появилась возможность количественного исследования тепловых процессов и свойств макросистем.

Вновь перед наукой встал вопрос: что же такое теплота? Наметились две противоположные точки зрения. Согласно одной из них - вещественной теории тепла - теплота рассматривалась как особого рода невесомая "жидкость", способная перетекать от одного тела к другому. Эта жидкость была названа теплородом. Чем больше теплорода в теле, тем выше температура тела.

Приверженцы другой точки зрения полагали, что теплота - это вид внутреннего движения частиц тела. Чем быстрее движутся частицы тела, тем выше его температура.

Таким образом, представление о тепловых явлениях и свойствах связывалось с атомистическим учением древних философов о строении вещества. В рамках подобных представлений теорию тепла первоначально называли корпускулярной (от слова "корпускула" - частица). Ее придерживались Ньютон, Гук, Бойль, Бернулли.

Большой вклад в развитие корпускулярной теории тепла сделал великий русский ученый М. В. Ломоносов. Он рассматривал теплоту как вращательное движение частиц вещества. С помощью своей теории ученый объяснил процессы плавления, испарения и теплопроводности, а также пришел к выводу о существовании "наибольшей или последней степени холода", когда движение частичек вещества прекращается. Благодаря работам Ломоносова среди русских ученых было очень мало сторонников вещественной теории теплоты.

И все же, несмотря на многие преимущества корпускулярной теории теплоты, к середине XVIII в. временную победу одержала теория теплорода. Это произошло после того, как экспериментально было доказано сохранение теплоты при теплообмене. Отсюда был сделан вывод о сохранении (неуничтожении) тепловой жидкости - теплорода. В вещественной теории было введено понятие теплоемкости тел и с ее помощью построена количественная теория теплопроводности. Многие термины, введенные в то время, сохранились и доныне.

В середине XIX в. была доказана связь между механической работой и количеством теплоты. Подобно работе количество теплоты оказалось мерой изменения энергии. Нагревание тела связано не с увеличением в нем количества особой невесомой "жидкости", а с увеличением его энергии. Принцип теплорода был заменен гораздо более глубоким законом сохранения энергии. Было установлено, что теплота представляет собой форму энергии.

Значительный вклад в развитие теорий тепловых явлений и свойств макросистем внесли немецкий физик Р. Клаузиус (1822-1888), английский физик-теоретик Дж. Максвелл, австрийский физик Л. Больцман (1844-1906) и другие ученые.

Термодинамическое и статистическое описание свойств макросистем.

Открытие закона сохранения энергии способствовало развитию двух качественно различных, но взаимно дополняющих методов исследования тепловых явлений и свойств макросистем: термодинамического и статистического (молекулярно-кинетического). Первый из них лежит в основе термодинамики, второй - молекулярной физики.

Термодинамика представляет собой науку о тепловых явлениях, в которой не учитывается молекулярное строение тел. В термодинамике тепловые явления описываются с помощью величин, регистрируемых приборами, не реагирующими на воздействие отдельных молекул (термометр, манометр и др.). Все законы термодинамики относятся к телам, число молекул которых огромно. Такие тела называют макроскопическими. Они образуют макросистемы. Газ в баллоне, вода в стакане, песчинка, камень, стальной стержень и т. п. - все это примеры макросистем.

Основа термодинамического метода - определение состояния термодинамической системы, представляющей собой совокупность макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами (внешней средой). Состояние системы задается термодинамическими параметрами (параметрами системы), характеризующими ее свойства. Обычно в качестве термодинамических параметров состояния выбирают температуру, давление и удельный объем (объем единицы массы).

Температура - физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960 г.) в настоящее время рекомендовано применять только две температурные шкалы - термодинамическую и Международную практическую, градуированные соответственно в Кельвинах (К) и градусах Цельсия (°С). Анализ показывает, что 0 К (абсолютный нуль) недостижим, хотя сколь угодно близкое приближение к нему возможно.

К концу XIX в. была создана последовательная теория поведения больших общностей атомов и молекул - молекулярно-кинетическая теория, или статистическая механика. Многочисленными опытами была доказана справедливость этой теории.

Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Поведение громадного числа молекул анализируется с помощью статистического метода. Он основан на том, что свойства макроскопической системы в конечном результате определяются свойствами частиц системы, особенностями их движения и усредненными значениями кинетических и динамических характеристик таких частиц (скорости, энергии, давления и т. д.). Например, температура тела определяется скоростью беспорядочного движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Макроскопические характеристики тел имеют физический смысл лишь в случае большого числа молекул.

После создания молекулярной физики термодинамика не утратила своего значения. Она помогает понять многие явления и с успехом применяется при расчетах многих важных механических устройств. Общие законы термодинамики справедливы для всех веществ независимо от их внутреннего строения. Вместе с тем при расчете различных процессов с помощью термодинамики многие физические параметры, например теплоемкости тел, необходимо определять экспериментально. Статистические же методы позволяют на основе данных о строении вещества определить такие параметры. Однако количественная теория твердого и особенно жидкого состояния вещества очень сложна, поэтому в ряде случаев простые расчеты, основанные на законах термодинамики, оказываются незаменимыми.

В настоящее время в науке и технике широко используются как термодинамические, так и статистические методы описания свойств микросистемы.

Основные положения молекулярно-кинетическик представлений.

В основе молекулярно-кинетических представлений о строении и свойствах макросистем лежат три положения:

    - любое тело - твердое, жидкое или газообразное - состоит из большого числа весьма малых частиц - молекул (атомы можно рассматривать как одноатомные молекулы); - молекулы всякого вещества находятся в беспорядочном, хаотическом, не имеющем какого-либо преимущественного направления движении; - интенсивность, определяемая скоростью движения молекул, зависит от температуры вещества.

Тепловые процессы связаны со строением вещества и его внутренней структурой. Например, нагревание кусочка парафина на несколько десятков градусов превращает его в жидкость, а подобное нагревание металлического стержня не оказывает на него заметного влияния. Такое различное действие нагревания связано с различием во внутреннем строении данных веществ. Поэтому исследование тепловых явлений можно использовать для выяснения общей картины строения вещества. И, наоборот, определенные представления о строении вещества помогают понять физическую сущность тепловых явлений, дать им глубокое наглядное истолкование.

Количественным воплощением молекулярно-кинетических представлений служат опытные газовые законы (Бойля-Мариотта, Гей-Люссака, Авогадро, Дальтона), уравнение Клапейрона-Менделеева (уравнение состояния), основное уравнение кинетической теории идеальных газов, закон Максвелла для распределения молекул и др.

Из основного уравнения молекулярно-кинетической теории вытекает важный вывод: средняя кинетическая энергия поступательного движения одной молекулы идеального газа прямо пропорциональна его термодинамической температуре и зависит только от нее:

Где k - постоянная Больцмана; Т - температура.

Из данного уравнения следует, что при Т = 0 средняя кинетическая энергия равна нулю, т. е. при абсолютном нуле прекращается поступательное движение молекулгаза, а следовательно, его давление равно нулю. Термодинамическая температура - мера кинетической энергии поступательного движения идеального газа, а приведенная формула раскрывает молекулярно-кинетическое толкование температуры.

Первое положение молекулярно-кинетических представлений - любое тело состоит из большого числа весьма малых частиц-молекул - доказано многочисленными опытами, одновременно подтвердившими реальное существование молекул и атомов. Приведем некоторые цифры, показывающие, насколько малы размеры молекул и атомов и как много их содержится в каком-либо макроскопическом теле.

С помощью ионного микроскопа удалось показать, что диаметр атомов вольфрама составляет около 2 ангстрем (1 ангстрем равен 10-8 см). Размер молекулы водорода примерно того же порядка - примерно 2,3 ангстрема. Теперь понятно: при очень малых размерах молекул число их в любом макроскопическом теле огромно. Несложный расчет показывает, что число молекул в капле воды составляет около 3-1022. Такой маленький объект, а содержит такое колоссальное число молекул!

Похожие статьи




Cатистические и термодинамические свойства макросистем - Эволюция современного естествознания

Предыдущая | Следующая