Хемосинтез или возможна ли жизнь без солнечного света? - Хемосинтез и фотосинтез как источники жизненной энергии

Оказалось, что в глубинах океана существуют места, где жизнь в буквальном смысле бьет ключом. Удивительно богатые сообщества возникают там, где из разломов земной коры вырываются струи кипящей воды, насыщенной всевозможными химическими соединениями.

Разумеется, морские обитатели живут не в самом подводном гейзере - температура кипения воды при таком давлении может достигать 400ОС! Зато обычная температура на дне океана - всего 2-4ОС. Так что живые организмы могут выбирать себе условия по вкусу - некоторые из обитающих здесь бактерий выдерживают температуру более 100О, отдельные беспозвоночные - более 50О, но наибольшая плотность жизни сосредоточена все же там, где температура воды составляет 10-20ОС.

Однако температура температурой, а чем же питаются обитатели здешних сообществ, прозванных учеными "подводными райскими садами"? Вода подводных горячих источников, как впрочем и многих гейзеров на суше, содержит большое количество сероводорода. Это вещество, содержащее атом серы в восстановленном виде, легко окисляется с выделением большого количества энергии. При наличии определенных систем ферментов эту энергию можно утилизировать, использовав ее для синтеза АТФ. А энергия АТФ, в свою очередь, может быть использована для восстановления углерода и синтеза "обычных" питательных веществ (углеводов) из углекислого газа.

Необходимые ферментные системы имеются у ряда видов бактерий. Подобно зеленым растениям, они являются автотрофными организмами, самостоятельно создающими органическое вещество из неорганического. Однако, если растения относятся к группе фототрофов, т. е. используют для начального синтеза АТФ энергию солнечного света (фотосинтез), то серные бактерии живут за счет хемосинтеза и называются хемотрофами. Точнее - хемолитотрофами, чтобы подчеркнуть, что источником жизненной энергии для них является окисление простых неорганических веществ, совершенно бесполезных, а иногда и ядовитых для других организмов. А вот комплекс дальнейших реакций, приводящих к синтезу углеводов из углекислого газа - так называемый цикл Кальвина - у зеленых растений и серобактерий практически одинаков.

Но могут ли автотрофные бактерии выполнять роль продуцентов в "подводных райских садах" - сообществах, отличающихся довольно большой биомассой и разнообразием входящих в них видов? Конечно, они синтезируют углеводы и их количество в воде может быть очень высоким. Но ведь бактерии гораздо мельче даже одноклеточных водорослей и питаться ими не так-то просто для многоклеточных животных.

Однако разнообразие форм жизни и биологических связей на Земле уже не раз поражало воображение ученых. Так случилось и на этот раз. Оказалось, что основные обитатели глубоководных гидротермальных экосистем и не пытаются ловить или отфильтровывать плавающих вокруг бактерий, а просто поселяют их в своем теле. Так возникает удивительная форма симбиоза, заставляющая вспомнить о гипотезе, согласно которой хлоропласты зеленых растений - это потомки фотосинтезирующих бактерий, съеденных, но непереваренных в свое время какими-то гетеротрофными одноклеточными организмами. Правда, хемотрофные бактерии живут не внутри клеток, а просто в теле своих хозяев, но все-таки и в этом случае организмы-хозяева практически перестают нуждаться во внешнем источнике пищи.

Наиболее удивительными из таких животных являются организмы, относящиеся к типу погонофор (Pogonophora) - в процессе эволюции они совершенно утратили пищеварительную систему. О погонофорах - обитателях гидротермальных сообществ, мы уже рассказывали в нашей газете1. Однако в одном рассказе трудно охватить все сложные проблемы, которые поставили перед учеными эти необыкновенные живые организмы. Кроме того, исследования продолжаются и получены новые данные, о которых мы и хотим рассказать вам.

Основные обитатели глубоководных гидротерм, те самые поражающие воображение гигантские "черви" - погонофоры Riftia pachyptila Из отдельного класса погонофор-вестиментифер (Vestimentifera).

Мешковидное тело этих своеобразных животных заключено в трубку, стенки которой состоят из белка и хитина. Задний конец трубки прикрепляется к субстрату, а из переднего высовывается ярко-красный венец щупалец, выполняющих функцию жабр. Рта у вестиментифер, как и у всех погонофор, нет, зато имеется совершенно особый орган - Трофосома (Буквально - Питающее тело). Именно в нем обитает множество хемосинтезирующих бактерий, частично переваривая которых, рифтия и получает необходимые для жизни питательные вещества.

Однако для того, чтобы снабжать своего хозяина пищей, бактерии должны в достаточных количествах получать необходимые для хемосинтеза вещества. И в первую очередь - сероводород. Доставить его к заключенным в трофосоме бактериальным клеткам - это уже задача самой рифтии. И задача, прямо скажем, далеко не простая. Ведь сероводород - очень ядовитое вещество, практически у всех животных он блокирует дыхание, занимая места связывания кислорода на молекулах гемоглобина и инактивируя важный дыхательный фермент - цитохром-с-оксидазу.

Однако вестиментиферы отлично живут при таких концентрациях сульфида в окружающей среде, которые для большинства живых организмов смертельны. Мало того, их ярко-красные щупальца-жабры улавливают в воде и передают в кровь (на долю крови у этих животных приходится более 30% общего объема тела) одновременно и кислород, нужный для дыхания самих погонофор, и сероводород, необходимый питающим их бактериям.

Фотосинтез хемосинтез жизненная энергия

Исследования показали, что гемоглобин вестиментифер совершенно не похож на гемоглобин большинства других живых существ. Его молекула очень крупная (молекулярная масса составляет 2 млн дальтон (Да), в то время как молекулярная масса гемоглобина человека - 64000 Да). При этом гемоглобин вестиментифер содержится в плазме крови в свободном виде, а не заключен внутри эритроцитов, как у позвоночных животных. Но не это главное.

При хемосинтезе энергия извлекается бактериями из сероводорода. В районах гидротермальных выходов сероводород поглощается погонофорами, которые передают его эндосимбиотическим бактериям. В них сероводород окисляется, что и дает энергию для цикла Кальвина. Конечные продукты включаются в пищевую цепь

Гемоглобин рифтий способен одновременно связывать и кислород, и сероводород - молекулы этих веществ присоединяются к большой молекуле гемоглобина в разных участках. Таким образом решаются сразу две задачи - сульфид не нарушает дыхание животного и при этом не окисляется кислородом до попадания в бактериальную клетку. Подобная реакция, вполне возможная при одновременно высокой концентрации обоих веществ в крови, была бы сродни короткому замыканию - энергия окисления при этом выделилась бы впустую, в виде бесполезного тепла.

Интересно, что вестиментиферы не способны передавать живущих в их организме бактерий потомству. Личинки рифтий не имеют симбионтов, но зато обладают ртом и развитым кишечником. На ранних стадиях развития они свободно плавают и переносятся морскими течениями. Если обстоятельства сложатся удачно и личинка попадет в место, где обитают подходящие хемосинтезирующие бактерии, она заглатывает их. После этого пищеварительный тракт молодой вестиментиферы редуцируется, она прикрепляется к субстрату и начинает вести образ жизни, характерный для взрослых особей.

Если личинку рифтии отнесет в сторону от горячего источника, шансов выжить у нее немного. Впрочем и сами такие источники существуют недолго - от нескольких десятилетий до несколько лет. А потом рифтиям, точнее их личинкам, волей-неволей приходится искать себе новую территорию. Благо в зонах разломов океанской коры новые гейзеры возникают довольно регулярно.

Если рифтии - специализированные обитатели гидротермальных сообществ, то другие виды вестиментифер могут встречаться там, где сероводород и кислород соседствуют в окружающей среде по другим причинам. Такими местами являются крупные скопления разлагающегося органического вещества на морском дне. Например, трупы китов или затонувшие суда, перевозившие грузы пищевых продуктов. В холодной воде процессы разложения органики могут продолжаться десятилетиями. Наконец, существуют и такие вестиментиферы, которые содержат в своем теле не серобактерии, а микроорганизмы, окисляющие углеводороды, например метан. Такие погонофоры селятся в местах подводных выходов нефти и газа, длительность существования которых неизмеримо выше, чем подводных гейзеров. Исследования, проведенные в последнее время, показали, что некоторые из обитающих здесь погонофор, например, представители рода Lamellibrachia, могут считаться самыми долгоживущими неколониальными животными в мире. Скорость прироста их трубок такова, что особи, достигающие 2-метровых размеров - а такие отнюдь не редкость, могут иметь возраст 170-250 лет! До сих пор рекордсменом по этой части считались представители мира позвоночных - гигантские слоновые черепахи, одна из которых была поймана в возрасте 177 лет.

Но вернемся к сообществам, возникающим вокруг горячих глубоководных источников. Хотя рифтии являются преобладающими по численности многоклеточными, живущими здесь, симбиоз с хемотрофными бактериями свойствен не только им. Исследования показали, что подобным же образом получают пищу и двустворчатые моллюски двух обитающих около гидротермальных выходов видов - Calyptogena magnifica и Bathymodiolus termophilus.

У Calyptogena серобактерии поселяются на жабрах, где они могут легко получать необходимые им кислород и углекислый газ. Однако сероводорода в окружающей жабры моллюска воде относительно немного - в отличие от рифтий, гемоглобин Calyptogena Необратимо инактивируется сульфидом. Так, чтобы иметь возможность и есть, и дышать, моллюскам приходится располагаться на границе чистой воды и исходящих из источника струй, насыщенных химическими соединениями. В такую струюCalyptogena опускает свою далеко вытягивающуюся ногу.

В крови моллюска присутствует особый транспортный белок, способный лучше гемоглобина и цитохром-с-оксидазы связывать сероводород и тем самым предотвращающий блокирование дыхания. С помощью этого белка сульфид и переносится с током крови от места поглощения к бактериальным клеткам на жабрах, не окисляясь и не отравляя по дороге самого моллюска.

Сульфид для большинства живых организмов ядовит. Он нарушает дыхание, так как, во-первых связывается с гемоглобином крови, а во-вторых, ингибирует дыхательный фермент цитохром-с-оксидазу (рис.1). У животных, обитающих на дне океана, там где вода богата сероводородом, выработались особые приспособления, позволяющие избежать сульфидного отравления.

У представителей второго вида двустворчатых, Bathymodiolus thermophilus, особенности транспорта H2S не изучены, известно только, что и у них серобактерии поселяются на жабрах. Оба вида моллюсков, по-видимому, уже не способны питаться самостоятельно, без помощи симбионтов, и на тех участках дна, где выход содержащих сероводород горячих источников прекратился, эти животные погибают.

Остальные многоклеточные обитатели гидротермалей, во всяком случае крабы, креветки и рыбы, питаются обычным образом. Они либо отфильтровывают мелкие пищевые частицы (в том числе и бактерий) из воды, либо хищничают, обкусывая, например щупальца рифтий.

Однако и таким животным приходится вырабатывать определенные приспособления для жизни в столь специфических условиях. Крабы, например, способны нейтрализовать ядовитый сероводород, окисляя его до менее токсичного тиосульфата. Происходит этот процесс в гепатопанкреасе - специальной ткани, по своим функциям сходной с печенью позвоночных животных.

В общем, подводные "райские сады" являются удивительными, совершенно необычными экосистемами, механизмы адаптации членов которых изучены еще далеко не полностью.

Похожие статьи




Хемосинтез или возможна ли жизнь без солнечного света? - Хемосинтез и фотосинтез как источники жизненной энергии

Предыдущая | Следующая