Структура ДНК - ДНК

Молекулы ДНК являются линейными макромолекулами, представляющими собой длинные двойные цепи (тяжи) полимеров, составленных из мономеров, получивших название нуклеотидов (малых органических молекул) и являющихся строительными блоками ДНК.

У всех живых существ макромолекулы ДНК построены по одному и тому же плану. Они слагаются в основном из одних и тех же нуклеотидов. В состав нуклеиновых кислот входят пуриновые (А, Г) и пиримидиновые основания (Ц, Т) и простейшие углеводы; выделяют аденин (А) и гуанин (Г), фосфорную кислоту и углеводы. Если в построении белка участвует 20 аминокислот, то нуклеотидов -- всего 4 (хотя сами они -- достаточно сложные образования). Их фосфатные группы освобождают в растворах ионы водорода. Сахар может быть в двух вариантах: рибоза (Р), представляющая сахар с пятью атомами углерода, к одному из которых присоединена гидроксильная группа (--ОН), и дезоксирибоза (Д), в молекуле которой в отличие от глюкозы не 6, а 5 атомов углерода (пентоза) и к одному из атомов углерода присоединен атом водорода. При этом они никогда не встречаются одновременно, поэтому этим сахарам соответствуют два типа нуклеиновых кислот -- ДНК и РНК. Сначала думали, что они тоже разобщены в клетках: ДНК -- в ядре, а РНК -- вне его. Теперь ясно, что ДНК находится в основном в ядре (хромосомах), а частично -- в других клеточных компонентах (например, хлоропластах зеленых растений).

Основания -- другой компонент нуклеотида -- названы так, потому что реагируют как основания: в кислой среде способны присоединять ион водорода. Они тоже могут относиться к двум группам: пиримидинов, в основе строения которых -- шестичленное кольцо (рис. 11.2, а), и пиринов, у которых к пиримидиновому присоединено пятичленное кольцо (рис. 11.2, б). В ДНК последовательно соединены дезоксирибонуклеотиды, каждый из которых содержит какое-то из четырех оснований (А, Ц, Г, Т), а РНК -- рибонуклеотиды, содержащие тоже по одному основанию (А, Ц, Г, У). Все молекулы имеют форму цепи (от 77 до нескольких миллионов нуклеотидов).

Нуклеотиды -- не только составная часть нуклеиновых кислот, они входят в состав ферментов в качестве активных групп -- коферментов (так Тодд назвал комплекс азотного основания, углевода и остатка фосфорной кислоты). Блоки А, Г, Т, Ц образуют длинную полимерную цепь, которая соединяется друг с другом в разных комбинациях. Американский биохимик Э. Чаргафф сформулировал (1948) правила регулярности в парных отношениях пуриновых и пиримидиновых оснований в молекулах нуклеиновых кислот: 1 -- общее количество гуанина и аденина (из группы пуринов Г и А) равно количеству цитозина и тимина (из группы пиримидинов Ц и Т), т. е. А + Г = Т + Ц; 2 -- отношения А/Т и Г/Ц примерно равны единице, т. е. А = Т и Ц = Г; 3) -- при этом Г + Т = А + Ц; 4 -- ДНК из разных источников может иметь отличия -- в одних случаях А + Т>Г + Ц, а в других -- Г + Ц>А + Т. Эти правила явились предтечей открытия двойной спирали ДНК.

Для молекулы ДНК тоже характерна структура трех видов -- первичная, вторичная и третичная. Первичная структура ДНК состоит из нуклеотидных цепей, у которых скелетную основу составляют чередующиеся сахарные и фосфатные группы, соединенные ковалентными связями, а боковые части представлены одним из четырех оснований и присоединяются одна к другой молекулой сахара. Нуклеотиды расположены друг за другом и связаны ковалентно с фосфатом и сахарным остатком, образуя полинуклеотидную цепь.

Вторичная структура была сформулирована Д. Уотсоном и Ф. Криком. Две идущие рядом нити, скрепленные одна с другой перемычками и свившиеся в двойную спираль, и есть молекула ДНК. Обе нити одинаковы по длине, остатки пар А--Т и Г--Ц разделены одинаковыми расстояниями. Двойная спираль имеет упорядоченный характер, так как каждая связь основание -- сахар находится на одинаковом расстоянии от оси спирали и повернута на 36°, причем в каждой из них в зависимости от вида ДНК могут быть до миллионов блоков -- нуклеотидов. Порядок их чередования определяет наследственную информацию, записанную в ДНК и передаваемую следующим поколениям. Первое предположение о роли нуклеиновых кислот в качестве генетического материала сформулировал доцент Петербургского университета А. Щепотьев (1914). Химики понимали, что ДНК собрана из нуклеотидов, имеющих фосфатную группу, связанную ковалентно с пятиуглеродным сахаром, который связан с одним из четырех азотистых оснований. Нуклеотиды соединены друг с другом так, чтобы фосфатная группа одного была связана с сахаром предыдущего, и из их чередующихся комбинаций образуется длинная цепочка -- сахарофосфатный остов молекулы. По одну сторону под прямым углом к остову располагаются основания.

Молекула ДНК оказалась закручена в спираль: снаружи спирали -- остов, а внутри -- перпендикулярные ему основания. На один виток спирали приходилось примерно по десять нуклеотидов, а ее толщина указывала, что скручено более одной нити. Итак, вторичная структура отражает форму нуклеиновой кислоты. Степень скручивания ДНК зависит от ферментов.

В живых клетках цепи очень длинные, содержат до 108 пар в ряд и свиты в плотный клубок. У человека длина такой винтовой лестницы в размотанном состоянии достигает нескольких метров, и это одна молекула! Отсюда -- огромность числа возможных вариантов расположения молекул в ДНК. И это разнообразие связано с разнообразием жизни, а расположение четырех типов пар в молекуле ДНК задает всю программу, говорит клетке, как ей развиваться и что делать.

Диаметр двойной спирали 2 * 10-9 м (2 нм), расстояние между соседними парами оснований спирали 0,34 * 10-9 м (0,34 нм), полный оборот спирали завершается через 10 пар, а длина зависит от организма, которому принадлежит эта молекула ДНК. Длина плодовой мушки (дрозофилы) 4 * 10-3 м, а самой длинной ее хромосомы -- в 10 раз больше. У простейших вирусов ДНК содержит несколько тысяч звеньев, у бактерий -- несколько миллионов, а у высших -- миллиарды. Если выстроить в одну линию молекулы ДНК, заключенные в одной клетке человека, то получится длина в 2 м, т. е. длина в миллиард раз больше толщины. Но она умещается в клеточном ядре, значит, ее "укладка" такова, чтобы по всей длине она была доступна для белков, которым нужно "читать" гены. Основания, соединенные слабой водородной связью, взаимно дополняют друг друга, и каждая цепь автоматически поставляет информацию для нахождения партнера. В эукариотических клетках основные части ДНК и белков сплетены так, что напоминают нить бус. Каждая такая "бусинка" окружена четырьмя ядерными блоками и содержит около 200 сдвоенных оснований, а "нить" состоит из ДНК и ядерного белка (гистона), отличного от того, что входил в состав "бусинок".

О расшифровке структуры ДНК сообщалось в статье Уотсона и Крика, занявшей всего две странички в журнале, но открывшей новую эпоху в раскрытии тайны жизни. В публикации (1953) Крик и Уотсон отметили, что такая структура хорошо объясняет процесс "воспроизводства" этой молекулы. При рассоединении цепей возможно присоединение новых нуклеотидов к каждой из них, тогда около каждой старой возникнет новая цепь, точно ей соответствующая. Так впервые пришли к структуре, способной к самовоспроизведению. Число два удовлетворило биологов, поскольку и клетки, и хромосомы воспроизводятся путем деления исходной на две.

Третичная структура ДНК, определяемая трехмерной пространственной конфигурацией молекул, пока изучена недостаточно.

Исследования показали, что ДНК может существовать в двух формах: А (при низкой влажности) и В (при высокой). Для обеих форм построили молекулярные модели. Из дифракционных картин волокон ДНК информацию получить было достаточно трудно, так как у цепи ДНК вдоль оси расположены волокна беспорядочно, но была подтверждена ее спиральная структура. К настоящему времени исследователи научились синтезировать в необходимом количестве и получать в достаточно чистом виде короткие участки ДНК заданной последовательности, что позволяет закристаллизовать фрагменты молекулы длиной от 4 до 24 пар оснований и исследовать эти кристаллы с помощью рентгеноструктурного анализа. Исследования дали действительную похожесть обеих форм на гибкую лестницу, закрученную спирально вокруг центральной оси.

Похожие статьи




Структура ДНК - ДНК

Предыдущая | Следующая