Устройства для получения низкотемпературной плазмы и области их применения - Электротехнологические плазменные установки

Плазменная технология - молодая отрасль промышленности, интенсивное ее развитие началось в 50-х годах нашего столетия и бурно продолжается в разных странах. Свидетельством тому служит большой поток патентной и научной информации, а также расширяющиеся области промышленного использования.

Предпосылкой для развития плазменной технологии стало развитие космической техники, что потребовало создания различных типов двигателей, в том числе и плазменных, материалов и конструкций космических аппаратов, сохраняющих работоспособность при входе в плотные слои атмосферы, испытаний летательных аппаратов при больших скоростях полета, исследований в области термоядерного синтеза, газодинамики при высоких скоростях, физики газового разряда, химической технологии высоких режимных параметров. С использованием плазменной технологии созданы не только новые материалы, обладающие высокими технологическими свойствами (огнеупорностью, твердостью, прочностью), но и аппаратура эффективной обработки этих материалов.

Плазменная резка черных (нержавеющих) и цветных металлов впервые разработана в СССР в 1956-1957 гг. Она позволяет резать с высокими скоростями стали больших толщин, медь и ее сплавы, алюминий и другие металлы (например, плазмотрон мощностью 100 кВт режет сталь толщиной 30 мм со скоростью 4 м/мин). При этом сокращаются подгоночные работы в сварочных цехах, поскольку после плазменной резки заготовки имеют большую точность размеров. Плазменная резка широко применяется в судостроении, на предприятиях тяжелого и атомного машиностроения, химической и электротехнической промышленности.

Плазменная сварка обеспечивает соединение деталей из меди, латуни, бронзы, алюминия и его сплавов. Плазменная наплавка и напыление обеспечивают покрытие деталей износостойким, жаропрочным и антикоррозионным составом с минимальным перемешиванием наносимого и основного материала.

Важным направлением использования плазменных потоков является вакуумная плазменная технология с использованием электромагнитных ускорителей. В облако плазмы в вакууме помещают деталь, которой сообщают отрицательный потенциал. Тогда положительные ионы вытягиваются из объема плазмы, ускоряются электрическим полем и поступают к детали. В такой системе удается получить потоки частиц со скоростями до сотни километров в секунду и энергиями до десятков тысяч электрон-вольт. Это позволяет проводить технологические процессы, основанные на конденсации атомарных частиц на поверхности, испарение поверхности металлов, внедрение атомов в глубь кристаллической решетки, имплантацию ионов нужного вида.

В вакуумных плазменных установках может быть получена плазма всех известных металлов, сплавов, органических и неорганических веществ. При этом плазмы различных веществ могут вступать в интенсивное химическое взаимодействие, которое невозможно в других обстоятельствах.

Методом плазменной технологии в вакууме могут быть успешно решены следующие наиболее актуальные задачи:

Получение особо чистых слоев материалов, обладающих специальными свойствами и выполняющих активные функции (магнитные, оптические, эмиссионные, сверхпроводящие и другие слои);

Защита элементов конструкций барьерными слоями от воздействия агрессивных сред, больших скоростей газовых потоков, высоких температур;

Изменение структурно-энергетического состояния поверхности материалов (упрочнение поверхности, ионное легирование полупроводников и др.);

Получение материалов в виде многослойных структур, обладающих высокими механическими и эксплуатационными свойствами; получение пленочных монокристаллических структур.

Вакуумная плазменная технология, несмотря на некоторую сложность, позволяет существенно пополнить арсенал методов бесконтактной обработки материалов.

Плазменные технологические процессы в химии состоят из следующих основных стадий: 1) генерация плазмы необходимого состава и параметров по температуре и давлению; 2) ввод реагентов - веществ в твердом, жидком или газообразном состоянии и обеспечение необходимого времени их контакта; 3) вывод целевого продукта или нескольких продуктов из зоны реакции.

Для получения плазмы используются плазмотроны с различными принципиальными схемами. Плазмохимические реакции могут осуществляться двумя способами: подача всех компонентов плазмы в зону электрического разряда с прохождением тока его через реагирующую плазму и подача реагентов в струю плазмы вне зоны разряда. В первом случае плазмотрон совмещается с реакционным объемом - реактором, во втором применяются плазмоструйные реакторы, представляющие собой цилиндрический охлаждаемый сосуд, где происходит смешение плазменного потока с вводимым материалом.

Закалка и охлаждение продуктов реакции производятся путем введения в плазму вне зоны разряда дополнительного количества какого-либо газа или жидкости, а также охлаждаемых экранов-теплообменников.

Для получения оксидов азота, идущих в дальнейшем на производство азотных удобрений, используется воздушная плазма с температурой 3000-3500 К при давлении (20ч30) 104Па, охлаждаемая в процессе закалки со скоростью 108К/с до температуры 2000-1800 К и остывающая далее в теплообменниках.

Существующие способы получения плазмы можно классифицировать следующим образом: 1) взрыв проводника в электрической цепи; 2) электрическая искра; 3) высокочастотный факельный разряд; 4) коронирующий разряд; 5) дуговой разряд.

Для технологических целей наиболее приемлемыми оказались способы получения плазмы с помощью высокочастотного и дугового разрядов. В настоящее время последний способ имеет ряд преимуществ:

    1) возможность получения плазмы в течение длительного времени с высоким коэффициентом полезного действия из твердых, жидких и газообразных сред любого химического состава; 2) возможность получения плазмы в вакууме и при высоких давлениях; 3) возможность использования стандартных источников электрического питания.

Для получения плазмы в плазмотронах используют газы, т. е. плазмообразующую среду. Она может быть одно - и многокомпонентной. В качестве однокомпонентной плазмообразующей среды применяют аргон, гелий, азот и водород.

Подбором состава многокомпонентной плазмообразующей среды в плазменно-технологическом реакторе можно получить любую атмосферу: окислительную, восстановительную или нейтральную.

Одним из наиболее важных тепловых параметров плазмы является ее энтальпия, т. е. количество теплоты, содержащееся в единице ее объема или массы.

Похожие статьи




Устройства для получения низкотемпературной плазмы и области их применения - Электротехнологические плазменные установки

Предыдущая | Следующая