Заключение - Значение фотосинтеза для урожайности сельскохозяйственных культур

Фотосинтетический сельскохозяйственный урожай

В истории исследований фотосинтеза выделяют несколько основных этапов. Обратим наше внимание на эти этапы:

    1771-1850 гг. Открытие фотосинтеза английским ученым Дж. Пристли и первые исследования по зависимости фотосинтеза от освещения, содержания хлорофилла в листе и наличия СО2 в атмосфере (голландский врач Я. Ингенгауз и швейцарские естествоиспытатели Ж. Сенебье, Н. Соссюр). 1850-1900 гг. Работы, связанные с исследованием энергетики фотосинтеза. Сформулированы основные положения о преобразовании в растении световой энергии в химическую (немецкий врач и физик Ю. Майер), о роли в этом процессе отдельных участков спектра (английский физик Д. Г. Стокс, немецкий ботаник Ю. Сакс). Исследованиями К. А. Тимирязева решен вопрос о зависимости фотосинтеза от лучей различной длины волны и сформулированы представления о фотосинтезе как процессе аккумуляции солнечной энергии. 1900-40 гг. Развитие физиологии фотосинтеза. В 1906 русский ботаник М. С. Цвет разработал метод хроматографического разделения и выделения хлорофиллов. Экспериментально обосновано представление о световых (фотохимических) и темновых (ферментативных) стадиях фотосинтеза (английский ученый Ф. Блекман, российский -- А. А. Рихтер, немецкий -- О. Варбург, американские -- Р. Эмерсон, У. Арнольд). Английским исследователем Р. Хиллом в 1939 показано, что изолированные хлоропласты в присутствии искусственного акцептора электронов (феррицианида калия) способны осуществлять транспорт электронов от воды с выделением молекулярного кислорода. 1940-50 гг. На основании анализа распределения изотопов кислорода показано, что источником О2, выделяемого при фотосинтезе, является вода (российские ученые А. П. Виноградов и М. В. Тейц,1941). 1950-60 гг. Развитие биохимиии фотосинтеза. Обнаружение цитохромов в хлоропластах (Р. Хилл, 1951). М. Калвин, используя метод меченых атомов, выяснил путь углерода при фотосинтезе (Нобелевская премия по химии в 1961). Р. Эмерсон (1957) экспериментально обосновал концепцию о двух фотосистемах. Американский биохимик Д. Арнон открыл в 1954 фотосинтетическое фосфорилирование и провел различия между его циклическим и нециклическим путями. Разработаны основные положения фотохимии пигментов (российские ученые А. Н. Теренин, А. А. Красновский, американский биофизик Е. Рабинович и др.).

С 1960 по настоящее время. Развитие исследований в области биофизики, биохимии, молекулярной биологии, генетики и физиологии фотосинтеза. В 1960 Р. Хилл и Ф. Бендалл сформулировали представление о Z-схеме фотосинтеза. В 1966 М. Хетч и К. Слэк (и одновременно российский исследователь Ю. С. Карпилов) обнаружили путь С4-дикарбоновых кислот. В 70 гг. разработана теория фотосинтетической продуктивности растений (российский физиолог растений А. А. Ничипорович). Сформулированы представления о надмолекулярных комплексах ФС I, ФС II, bf-цитохромном и АТФ-синтазном комплексах и их локализации в тилакоидных мембранах хлоропластов. Установлена структура реакционного центра -- основного компонента фотосинтетического аппарата у пурпурных бактерий (немецкие биофизики И. Дайзенхофер, Х. Михель и Р. Хубер; Нобелевская премия, 1988).

Фотосинтетическая функция зеленого растения лежит в основе формирования урожая. Изучение закономерностей роста и развития растений, находящихся в тесной взаимосвязи с процессами фотосинтеза, минерального питания и водного режима растения, -- основное направление селекционно-генетических и агротехнических работ, проводимых в мировой сельскохозяйственной практике. Оптимизация условий водоснабжения и минерального питания ведет, прежде всего, к увеличению суммарных размеров фотосинтетической поверхности посева -- площади листьев, увеличению оптической и геометрической плотности посевов, и, следовательно, более полному использованию ими приходящей энергии солнечного света и углекислого газа из воздуха. До определенных пределов размер урожая находится в тесной связи с размерами площади листьев, длительностью и интенсивностью их работы. Однако по мере увеличения плотности посевов усиливается взаимное затенение листьев, снижается их освещенность, ухудшается вентиляция посевов, затрудняется поступление к листьям углекислого газа. В результате фотосинтетическая активность растения снижается. Обоснование мероприятий, направленных на усиление факторов, увеличивающих продуктивность растений, и на уменьшение и устранение условий, ограничивающих их продуктивность -- главная задача разрабатываемой в нашей стране (А. А. Ничипорович, 1977) и за рубежом теории фотосинтетической продуктивности.

Жизнь современного человека немыслима без выращивания различных культурных растений. Органические вещества, образуемые ими в ходе фотосинтеза, служат основой питания человека, производства лекарств, они нужны для изготовления бумаги, мебели, строительных материалов и многого другого.

Как известно, процесс фотосинтеза осуществляется в особых органоидах -- хлоропластах. Здесь происходит множество реакций, прежде чем из углекислого газа и воды образуются молекулы органических веществ. Управлять этими процессами, безусловно, непросто, но возможно. Об этом свидетельствует тот факт, что интенсивность фотосинтеза у разных растений неодинакова. У одних листовая поверхность площадью в 1 квадратный дециметр усваивает за час от четырех до семи миллиграммов СО2, а у других -- 60-- 80 и даже 100, то есть в 20 раз больше! Растения неодинаково реагируют на его низкую концентрацию в воздухе, интенсивность освещения и т. д. Изучение особенностей фотосинтеза у разных растений, безусловно, будет способствовать расширению возможностей человека в управлении их фотосинтетической деятельностью, продуктивностью и урожаем.

Для получения высоких урожаев сельскохозяйственных культур необходима селекционно-генетическая работа, направленная на повышение интенсивности фотосинтеза, скорости оттока ассимилятов, на увеличение чистой продуктивности фотосинтеза.

Современные знания о процессе фотосинтеза, как на уровне растения, так и фитоценоза, позволяют видеть основные направления оптимизации фотосинтеза и увеличения продуктивности растений. Наиболее полно вопросы фотосинтетической деятельности растений в посевах, связанной с образованием хозяйственного урожая (используемого человеком), его доли в биологическом урожае (т. е. суммарной массе всех органов растения), освещены в работах А. А. Ничипоровича.

В заключительных положениях скажем, что наивысшие урожаи могут быть обеспечены созданием следующих оптимальных условий:

    - Увеличением листовой поверхности в посевах. - Удлинением времени активной работы фотосинтетического аппарата в течение каждых суток и вегетационного периода (поддержка агротехникой и минеральными удобрениями). - Высокой интенсивностью и продуктивностью фотосинтеза, максимальными суточными приростами сухого вещества. - Максимальным притоком продуктов фотосинтеза из всех фотосинтезирующих органов в хозяйственно важные органы и высоким уровнем использования ассимилятов в ходе биосинтетических процессов.

Похожие статьи




Заключение - Значение фотосинтеза для урожайности сельскохозяйственных культур

Предыдущая | Следующая