Развитие концепции атомизма как подход к пониманию явлений природы - Концепция описания природы

В истории физики наиболее плодотворной и важной для понимания явлений природы была концепция атомизма, согласно которой материя имеет прерывистое, дискретное строение, т. е. состоит из мельчайших частиц -- атомов. До конца XIX в. в соответствии с концепцией атомизма считалось, что материя состоит из отдельных неделимых частиц -- атомов. С точки зрения современного атомизма, электроны -- "атомы" электричества, фотоны -- "атомы" света и т. д.

Концепция атомизма, впервые предложенная древнегреческим философом Левкиппом в V в. до н. э., развитая его учеником Демокритом и затем древнегреческим философом-материалистом Эпикуром (341--270 до н. э.) и запечатленная в замечательной поэме "О природе вещей" римского поэта и философа Лукреция Кара (I в. до н. э.), вплоть до нашего столетия оставалось умозрительной гипотезой, хотя и подтверждаемой косвенно некоторыми экспериментальными доказательствами (например, броуновским движением, законом Авогадро и др.)[ Киракосян Г. Ш. Логическая физика элементарных частиц. - М.: Гном-Пресс, 2002. - с.11-12.].

Многие ведущие физики и химики даже в конце XIX в. не верили в реальность существования атомов. К тому же многие экспериментальные результаты химии и рассчитанные в соответствии с кинетической теорией газов данные утверждали другое понятие для мельчайших частиц -- молекулы.

Реальное существование молекул было окончательно подтверждено в 1906г. опытами французского физика Жана Перрена (1870--1942) по изучению закономерностей броуновского Движения. В современном представлении молекула -- наименьшая частица вещества, обладающая его основными химическими свойствами и состоящая из атомов, соединенных между собой химическими связями. Число атомов в молекуле составляет от двух (Н2, О2, НF, КСI) до сотен и тысяч (некоторые витамины, гормоны и белки). Атомы инертных газов часто называют одноатомными молекулами. Если молекула состоит из тысяч и более повторяющихся единиц (одинаковых или близких по строению групп атомов), ее называют макромолекулой[ Киракосян Г. Ш. Логическая физика элементарных частиц. - М.: Гном-Пресс, 2002. - с.18-20.].

Атом -- составная часть молекулы, в переводе с греческого означает "неделимый". Действительно, вплоть до конца XIX в. неделимость атома не вызывала серьезных возражений. Однако физические опыты конца XIX и начала XX столетий не только подвергли сомнению неделимость атома, но и доказали существование его структуры. В своих опытах в 1897 г. английский физик Джозеф Джон Томсон (1856--1940) открыл электрон, названный позднее атомом электричества. Электрон, как хорошо известно, входит в состав электронной оболочки атомов. В 1898 г. Томсон определил заряд электрона, а в 1903 г. предложил одну из первых моделей атома Там же, с.21-22..

Для микро - и макросистем характерна индивидуальность: каждая система описывается присущей только ей совокупностью всевозможных свойств. Можно назвать существенные различия между ядром водорода и урана, хотя оба они относятся к микросистемам. Не меньше различий между Землей и Марсом, хотя эти планеты принадлежат одной и той же Солнечной системе.

Однако можно говорить о тождественности элементарных частиц. Тождественные частицы обладают одинаковыми физическими свойствами: массой, электрическим зарядом, спином и другими внутренними характеристиками (квантовыми числами). Например, все электроны Вселенной считаются тождественными. Понятие о тождественных частицах как о принципиально неразличимых частицах -- чисто квантово-механическое. Тождественные частицы подчиняются принципу тождественности.

Принцип тождественности -- фундаментальный принцип квантовой механики, согласно которому состояния системы частиц, получающиеся друг из друга перестановкой тождественных частиц местами, нельзя различить ни в каком эксперименте. Такие состояния должны рассматриваться как одно физическое состояние.

Принцип тождественности -- одно из основных различий между классической и квантовой механикой. В классической механике всегда можно проследить за движением отдельных частиц по траекториям и таким образом отличить частицы одну от другой. В квантовой механике тождественные частицы полностью лишены индивидуальности.

Принцип тождественности и вытекающие из него требования симметрии волновых функций для системы тождественных частиц приводят к важнейшему квантовому эффекту, не имеющему аналога в классической теории, -- существованию обменного взаимодействия. Одним из первых успехов квантовой механики было объяснение Гейзенбергом наличия двух состояний атома гелия -- орто - и парагелия, основанное на принципе тождественности.

Положение, сложившееся в современной физике элементарных частиц, напоминает положение, создавшееся в физике атома после открытия в 1869 г. Д. И. Менделеевым периодического закона[ Аистов И. В. Концепция современного естествознания. - СПб.: Питер, 2005. - с.33-34.]. Хотя физическая сущность этого закона была выяснена только спустя примерно 60 лет, после создания квантовой механики он позволил систематизировать известные к тому времени химические элементы и, кроме того, привел к предсказанию существования новых элементов и их свойств. Точно так же физики научились систематизировать элементарные частицы, причем систематика в ряде случаев позволила предсказать существование новых частиц и их свойств. Крупным шагом в познании микропроцессов явилось создание единой теории электромагнитных и слабых взаимодействий.

Движение: абсолютного покоя нет, движение -- неотъемлемое свойство материи; все течет, все изменяется и т. п. В физике движение рассматривается в самом общем виде как изменение состояния или другой физической системы и для описания состояния вводится набор измеряемых параметров, к которым со времен Декарта относятся пространственно-временные координаты, или точки пространственно-временного континуума, означающего непрерывное множество. В физике используются и другие параметры состояния систем: импульс, энергия, температура, спин и т. П[ Аистов И. В. Концепция современного естествознания. - СПб.: Питер, 2005. - с.41.].

Время: В более строгом определении время выражает порядок смены физических состояний и является объективной характеристикой любого физического процесса или явления; оно универсально. Говорить о времени безотносительно к изменениям в каких-либо реальных телах или системах с физической точки зрения бессмысленно.

Абсолютное, истинное математическое время само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью. Течение абсолютного времени изменяться не может. Относительное, кажущееся или обыденное время есть или точная, или изменчивая постигаемая чувствами внешняя, совершаемая при посредстве какого-либо движения, мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как - то: час, день, месяц, год.

Важная особенность времени выражена в постулате времени: одинаковые во всех отношениях явления происходят за одинаковое время. Хотя этот постулат кажется естественным и очевидным, его истинность относительна, так как его нельзя проверить на опыте даже с помощью самых совершенных, но реальных часов.

Пространство: Первое представление о пространстве возникло из очевидного существования в природе и в первую очередь в микромире твердых физических тел, занимающих определенный объем. Из такого представления вытекало определение: пространство выражает порядок сосуществования физических тел. По аналогии с абсолютным временем Ньютон ввел понятие абсолютного пространства, которое может быть совершенно пустым, существует независимо от наличия в нем физических тел, являясь как бы мировой сферой, где разыгрываются физические процессы. Свойства такого пространства определяются Евклидовой геометрией. Такое представление о пространстве и до сих пор лежит в основе многих экспериментов, позволивших сделать крупные открытия[ Аистов И. В. Концепция современного естествознания. - СПб.: Питер, 2005. - с.45-47.].

Похожие статьи




Развитие концепции атомизма как подход к пониманию явлений природы - Концепция описания природы

Предыдущая | Следующая