Кариоплазма, Хроматин - Клеточное ядро

Кариоплазма (ядерный сок, нуклеоплазма) - основная внутренняя среда ядра, она занимает все пространство между ядрышком, хроматином, мембранами, всевозможными включениями и другими структурами. Кариоплазма под электронным микроскопом имеет вид гомогенной или мелкозернистой массы с низкой электронной плотностью. В ней во взвешенном состоянии находятся рибосомы, микротельца, глобулины и различные продукты метаболизма.

Вязкость ядерного сока примерно такая же, как вязкость основного вещества цитоплазмы. Кислотность ядерного сока, определенная путем микроинъекции индикаторов в ядро, оказалась несколько выше, чем у цитоплазмы.

Кроме того, в ядерном соке содержатся ферменты, участвующие в синтезе нуклеиновых кислот в ядре и рибосомы. Ядерный сок не окрашивается основными красителями, поэтому его называют ахроматиновым веществом, или кариолимфой, в отличие от участков, способных окрашиваться, - хроматина.

Хроматин

Главный компонент ядер -- хроматин, является структурой, выполняющей генетическую функцию клетки, в хроматиновой ДНК заложена практически вся генетическая информация.

Эукариотические хромосомы, выглядят как резко очерченные структуры только непосредственно до и во время митоза - процесса деления ядра в соматических клетках. В покоящихся, неделящихся эукариотических клетках хромосомный материал, называемый хроматином, выглядит нечетко и как бы беспорядочно распределен по всему ядру. Однако, когда клетка готовится к делению, хроматин уплотняется и собирается в свойственное данному виду число хорошо различимых хромосом.

Хроматин был выделен из ядер и проанализирован. Он состоит из очень тонких волокон. Главными компонентами хроматина являются ДНК и белки, среди которых основную массу составляют гистоны и негистоновые белки. В среднем в хроматине около 40% приходится на ДНК и около 60% - на белки, среди которых специфические ядерные белки-гистоны составляют от 40 до 80% от всех белков, входящих в состав выделенного хроматина. Кроме того, в состав хроматиновой фракциям входят мембранные компоненты, РНК, углеводы, липиды, гликопротеиды.

Хроматиновые волокна в хромосоме свернуты и образуют множество узелков и петель. ДНК в хроматине очень прочно связана с белками, называемыми гистонами, функция которых состоит в упаковке и упорядочении ДНК в структурные единицы - нуклеосомы. В хроматине содержится также ряд негистоновых белков. В отличие от эукариотических, бактериальные хромосомы не содержат гистонов; в их состав входит лишь небольшое количество белков, способствующих образованию петель и конденсации (уплотнению) ДНК.

При наблюдении многих живых клеток, особенно растительных, или же клеток после фиксации и окраски внутри ядра выявляются зоны плотного вещества, которое хорошо окрашиваются разными красителями, особенно основными. Способность хроматина воспринимать основные (щелочные) красители указывает на его кислотные свойства, которые определяются тем, что в состав хроматина входит ДНК в комплексе с белками. Такими же свойствами окрашиваемости и содержанием ДНК обладают и хромосомы, которые можно наблюдать во время митотического деления клеток.

В отличие от прокариотических клеток ДНК-содержащий материал хроматина эукариот может пребывать в двух альтернативных состояниях: деконденсированном в интерфазе и в максимально уплотненном во время митоза, в составе митотических хромосом.

В неделящихся (интерфазных) клетках хроматин может равномерно заполнять объем ядра или же располагаться отдельными сгустками (хромоцентры). Нередко он особенно четко обнаруживается на периферии ядра (пристеночный, маргинальный, примембранный хроматин) или образует внутри ядра переплетения довольно толстых (около 0,3 мкм) и длинных тяжей в виде внутриядерной сети.

Хроматин интерфазных ядер представляет собой несущие ДНК тельца (хромосомы), которые теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной в ядрах разных клеток. Когда хромосома или ее участок полностью деконденсированы, эти зоны называют диффузным хроматином. При неполном разрыхлении хромосом в интерфазном ядре видны участки конденсированного хроматина (иногда называемого гетерохроматином). Многочисленными работами показано, что степень деконденсации хромосомного материала -- хроматина, в интерфазе может отражать функциональную нагрузку этой структуры. Чем более диффузен хроматин интерфазного ядра, тем выше в нем синтетические процессы. При синтезе РНК меняется структура хроматина. Падение синтеза ДНК и РНК в клетках обычно сопровождается увеличением зон конденсированного хроматина.

Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде телец -- хромосом. В этот период хромосомы не несут никаких синтетических нагрузок, в них не происходит включения предшественников ДНК и РНК.

Исходя из этого, можно считать, что хромосомы клеток могут находиться в двух структурно-функциональных состояниях: в рабочем, частично или полностью деконденсированном, когда с их участием в интерфазном ядре происходят процессы транскрипции и редупликации, и в неактивном - в состоянии метаболического покоя при максимальной их конденсации, когда они выполняют функцию распределения и переноса генетического материала в дочерние клетки.

Эухроматин и гетерохроматин

Степень структуризации, конденсации хроматина в интерфазных ядрах может быть выражена в разной мере. Так, в интенсивно делящихся и в мало специализированных клетках ядра имеют диффузную структуру, в них кроме узкого периферического ободка конденсированного хроматина встречается небольшое число мелких хромоцентров, основная же часть ядра занята диффузным, деконденсированным хроматином. В то же время в высокоспециализированных клетках или в клетках, заканчивающих свой жизненный цикл, хроматин представлен в виде массивного периферического слоя и крупных хромоцентров, блоков конденсированного хроматина. Чем больше в ядре доля конденсированного хроматина, тем меньше метаболическая активность ядра. При естественной или экспериментальной инактивации ядер происходит прогрессивная конденсация хроматина и, наоборот, при активации ядер увеличивается доля диффузного хроматина.

Однако при метаболической активации не всякие участки конденсированного хроматина могут переходить в диффузную форму. Еще в начале 1930-х годов Э. Гейтцем было замечено, что в интерфазных ядрах существуют постоянные участки конденсированного хроматина, наличие которого не зависит от степени дифференцированности ткани или от функциональной активности клеток. Такие участки получили название гетерохроматина, в отличие от остальной массы хроматина - эухроматина (собственно хроматина). По этим представлениям, гетерохроматин - компактные участки хромосом, которые в профазе появляются раньше других частей в составе митотических хромосом и в телофазе не деконденсируются, переходя в интерфазное ядро в виде интенсивно красящихся плотных структур (хромоцентров). Постоянно конденсированными зонами чаще всего являются центромерные и теломерные участки хромосом. Кроме них постоянно конденсированными могут быть некоторые участки, входящие в состав плечей хромосом -- вставочный, или интеркалярный, гетерохроматин, который в ядрах также представлен в виде хромоцентров. Такие постоянно конденсированные участки хромосом в интерфазных ядрах сейчас принято называть конститутивным (постоянным) гетерохроматином. Необходимо отметить, что участки конститутивного гетерохроматина обладают целым рядом особенностей, которые отличают его от остального хроматина. Конститутивный гетерохроматин генетически не активен; он не транскрибируется, реплицируется позже всего остального хроматина, в его состав входит особая (сателлитная) ДНК, обогащенная высокоповторяющимися последовательностями нуклеотидов, он локализован в центромерных, теломерных и интеркалярных зонах митотических хромосом. Доля конститутивного хроматина может быть неодинаковой у разных объектов. Функциональное значение конститутивного гетерохроматина до конца не выяснено. Предполагается, что он несет ряд важных функций, связанных со спариванием гомологов в мейозе, со структуризацией интерфазного ядра, с некоторыми регуляторными функциями.

Вся остальная, основная масса хроматина ядра может менять степень своей компактизации в зависимости от функциональной активности, она относится к эухроматину. Эухроматические неактивные участки, которые находятся в конденсированном состоянии, стали называть факультативным гетерохроматином, подчеркивая необязательность такого его состояния.

В дифференцированных клетках всего лишь около 10% генов находится в активном состоянии, остальные гены инактивированы и входят в состав конденсированного хроматина (факультативный гетерохроматин). Это обстоятельство объясняет, почему большая часть хроматина ядра структурирована.

ДНК хроматина

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу, подобную чистой выделенной ДНК в водных растворах. ДНК хроматина обладает молекулярной массой 7-9-106. В составе хромосом длина индивидуальных линейных (в отличие от прокариотических хромосом) молекул ДНК может достигать сотен микрометров и даже нескольких сантиметров. Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется.

ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов: часто повторяющиеся последовательности (>106 раз), входящие во фракцию сателлитной ДНК и не транскрибирующиеся; фракция умеренно повторяющихся последовательностей (102--105), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному; фракция уникальных последовательностей, несущая информацию для большинства белков клетки. Все эти классы нуклеотидов связаны в единую гигантскую ковалентную цепь ДНК.

Основные белки хроматина - гистоны

В клеточном ядре ведущая роль в организации расположения ДНК, в ее компактизации и регулировании функциональных нагрузок принадлежит ядерным белкам. Белки в составе хроматина очень разнообразны, но их можно разделить на две группы: гистоны и негистоновые белки. На долю гистонов приходится до 80% всех белков хроматина. Их взаимодействие с ДНК происходит за счет солевых или ионных связей и неспецифично в отношении состава или последовательностей нуклеотидов в молекуле ДНК. В эукариотической клетке содержится всего 5--7 типов молекул гистонов. В отличие от гистонов так называемые негистоновые белки большей частью специфически взаимодействуют с определенными последовательностями молекул ДНК, очень велико разнообразие типов белков, входящих в эту группу (несколько сотен), велико разнообразие функций, которые они выполняют.

Гистоны - белки, характерные только для хроматина, - обладают рядом особых качеств. Это основные или щелочные белки, свойства которых определяются относительно высоким содержанием таких основных аминокислот, как лизин и аргинин. Именно положительные заряды на аминогруппах лизина и аргинина обусловливают соленую или электростатическую связь этих белков с отрицательными зарядами на фосфатных группах ДНК.

Гистоны - относительно небольшие по молекулярной массе белки. Классы гистонов отличаются друг от друга по содержанию разных основных аминокислот. Для гистонов всех классов характерно кластерное распределение основных аминокислот -- лизина и аргинина, на N - и С-концах молекул. Срединные участки молекул гистонов образуют несколько (3-4) б-спиральных участков, которые компактизуются в глобулярную структуру в изотонических условиях. Богатые положительными зарядами неспирализованные концы белковых молекул гистонов и осуществляют их связь друг с другом и с ДНК.

В процессе жизнедеятельности клеток могут происходить посттрансляционные изменения (модификации) гистонов: ацетилирование и метилирование некоторых остатков лизина, что приводит к потере числа положительных зарядов, и фосфорилирование сериновых остатков, приводящее к появлению отрицательного заряда. Ацетилирование и фосфорилирование гистонов могут быть обратимыми. Эти модификации значительно меняют свойства гистонов, их способность связываться с ДНК.

Гистоны синтезируются в цитоплазме, транспортируются в ядро и связываются с ДНК во время ее репликации в S-периоде, т. е. синтезы гистонов и ДНК синхронизированы. При прекращении клеткой синтеза ДНК гистоновые информационные РНК за несколько минут распадаются и синтез гистонов останавливается. Включившиеся в хроматин гистоны очень стабильны, имеют низкую скорость замены.

Функции белков гистонов

1. Количественное и качественное состояние гистонов влияет на степень компактности и активности хроматина.

Общее содержание гистонов может регулировать уровень транскрипции. Модификация гистонов приводит к усилению транскрипции и одновременной декомпактизации хроматина.

2. Структурная -- компактизирующая -- роль гистонов в организации хроматина.

Для того чтобы огромные сантиметровые молекулы ДНК уложить по длине хромосомы, имеющей размер всего несколько микрометров, молекула ДНК должна быть скручена, компактизована с плотностью упаковки, равной 1 : 10 000. В процессе компактизации ДНК существуют несколько уровней упаковки, первые из которых прямо определяются взаимодействием гистонов с ДНК

Похожие статьи




Кариоплазма, Хроматин - Клеточное ядро

Предыдущая | Следующая