Технология проведения гидроразрыва пласта - Проектирование комплекса оборудования для гидроразрыва пласта

Для гидроразрыва пласта в первую очередь выбирают скважины с низкой продуктивностью, обусловленной естественной малой проницаемостью пород, или скважины, фильтрационная способность призабойной зоны которых ухудшилась при вскрытии пласта. Необходимо также, чтобы пластовое давление было достаточным для обеспечения притока нефти в скважину. До разрыва пород скважину исследуют на приток и определяют ее поглотительную способность н давление поглощения. Результаты исследования на приток и данные о поглотительной способности скважины до и после разрыва дают возможность судить о результатах операции, помогают ориентировочно оценить давление разрыва, правильно подобрать подходящие свойства и количество жидкости для проведения разрыва, судить об изменениях проницаемости пород призабойной зоны после разрыва. Перед началом работ скважину очищают от грязи дренированием и промывают, чтобы улучшить фильтрационные свойства призабойной зоны. Хорошие результаты разрыва можно получить при предварительной обработке скважины соляной или глинокислотой (смесь соляной и плавиковой), поскольку при вскрытии пласта проницаемость пород ухудшается в тех интервалах, куда больше всего проникают фильтрат и глинистый раствор. Такими проппастками являются наиболее проницаемые участки разреза, которые после вскрытия пласта при бурении на глинистом растворе становятся иногда мало проницаемыми для жидкости разрыва. После предварительной кислотной обработки улучшаются фильтрационные свойства таких пластов и создаются благоприятные условия для образования трещин.

В промытую, очищенную скважину спускают насосные трубы диаметром 76 или 102 мм, по которым жидкость разрыва подают на забой. При спуске труб меньшего диаметра вследствие значительных потерь давления процесс разрыва затрудняется. Для предохранения обсадной колонны от воздействия высокого давления над пластом устанавливают пакер. Чтобы он не сдвигался по колонне при повышении давления на трубах рекомендуется устанавливать гидравлический якорь. Чем больше давление в трубах и внутри якоря, тем с большей силой выдвигаются и прижимаются поршеньки якоря к обсадной колонне. Кольцевые грани на торце поршеньков, врезаясь в колонну, оказывают тем большее тормозящее действие, чем выше давление. Имеются якоря и других типов.

Устье скважины оборудуется специальной головкой, к которой подключают агрегаты для нагнетания жидкостей.

Разрыв пласта осуществляется нагнетанием в трубы жидкости разрыва до момента расслоения пласта, который отмечается значительным увеличением коэффициента приемистости скважины. Если для разрыва используется слабо фильтрующаяся жидкость, а также если проницаемость пород в призабонной зоне заметно ухудшена вследствие засоренности глинистым раствором, в момент разрыва иногда наблюдается снижение давления нагнетания.

Первые жидкости разрыва были на нефтяной основе, однако с конца 50-х гг. начали применять жидкости на водной основе, наиболее распространенные из которых - гуаровая смола и гидроксипропилгуар. В настоящее время в США более 70 % всех ГРП производится с использованием этих жидкостей. Гели на нефтяной основе используются в 5 % случаев, пены со сжатым газом (обычно СО2 и N2) применяют в 25 % всех ГРП. Для повышения эффективности гидроразрыва в жидкости разрыва добавляют различные присадки, в основном это антифильтрационные агенты и агенты снижения трения.

Современные материалы, используемые для закрепления трещин в раскрытом состоянии - пропанты. Они классифицируются следующим образом: кварцевые пески и синтетические пропанты средней и высокой прочности. К физическим характеристикам пропантов, которые влияют на проводимость трещины, относятся такие параметры, как прочность, размер гранул и гранулометрический состав, качество (наличие примесей, растворимость в кислотах), форма гранул (сферичность и округлость) и плотность.

Основным и наиболее широко используемым материалом для закрепления трещин является песок. Его плотность составляет приблизительно 2,65 г/см2. Пески обычно используются при гидроразрыве пластов, в которых напряжение сжатия не превышает 40 МПа. Среднепрочными являются керамические пропанты с плотностью 2,7-3,3 г/см2, используемые при напряжении сжатия до 69 МПа. Сверхпрочные пропанты, такие как спеченный боксит и окись циркония, используются при напряжении сжатия до 100 МПа, плотность этих материалов составляет 3,2-3,8 г/см2. Использование сверхпрочных пропантов ограничивается их высокой стоимостью.

Кроме того, в США применяется так называемый суперпесок - кварцевый песок, зерна которого покрыты специальными смолами, повышающими прочность и препятствующими выносу частиц раскрошившегося пропанта из трещины. Плотность суперпеска составляет 2,55 г/см2. Производятся и используются также синтетические смолопокрытые пропанты.

Прочность является основным критерием при подборе пропантов для конкретных пластовых условий с целью обеспечения длительной проводимости трещины на глубине залегания пласта. Поэтому для различных глубин применяют следующие виды пропантов: кварцевые пески - до 2500 м; проппанты средней прочности - до 3500 м; пропанты высокой прочности - свыше 3500 м.

До недавнего времени в качестве пропанта в России использовался только натуральный песок в количестве до 130 т/скв, а в большинстве случаев закачивалось 20-50 т/скв. В связи с относительно небольшой глубиной залегания обрабатываемых пластов не было необходимости в применении синтетических высококачественных пропантов. До конца 80-х гг. при проведении ГРП использовалось в основном отечественное или румынское оборудование, в некоторых случаях - американское.

Сейчас имеются широкие потенциальные возможности для внедрения крупномасштабных операций по проведению ГРП в низкопроницаемых газоносных пластах на месторождениях Сибири (глубина - 2000-4000 м), Ставропольского (2000-3000 м) и Краснодарского (3000-4000 м) краев, Саратовской (2000 м), Оренбургской (3000-4000 м) и Астраханской (Карачаганакское месторождение (4000-5000 м)) областей.

Выбор технологической схемы и эффективность обработки в значительной степени зависят от мощности оборудования. Установлено, что наилучшие результаты получаются при высоких давлениях нагнетания и большой производительности оборудования, что объясняется, по-видимому, значительным раскрытием трещин при высоких давлениях и заполнением их песком. Отечественная промышленность выпускает агрегаты 2АН-500 и 4АН-700, предназначенные для проведения гидроразрывов пластов. Агрегат АН-500 может создавать рабочее давление до 50 Мн/м2. Использование 3-4 агрегатов одновременно дает возможность нагнетать в скважину жидкость разрыва со скоростью 10-15 дм3/сек при давлении до 50 Мн/м2. Процесс смешения песка с жидкостью механизируется при помощи специальных пескосмесительных агрегатов. Пескосмесительный агрегат П-100 конструкции Гидронефтемаша способен создавать содержание песка в песконосителе до 1000 кг/м3 при производительности по сухому песку до 100 т/ч. Сконструирована передвижная лаборатория, позволяющая непрерывно наблюдать за параметрами жидкостей разрыва и технологией проведения процесса.

Кроме описанной схемы гпдроразрыва, в зависимости от условий проведения процесса и его назначения применяют другие технологические схемы.

В неглубоких скважинах разрыв пласта можно проводить без спуска насосно-компрессорных труб или с трубами, но без пакера. В первом случае жидкость нагнетается непосредственно по обсадным трубам, а во втором-как по трубам, так и по кольцевому пространству. При такой технологии можно значительно уменьшить потери давления в скважине при нагнетании очень вязкой жидкости. Для улучшения условий притока можно применять и многократный разрыв пласта. Сущность его заключается в том, что в пласте на разных глубинах создают несколько трещин и, таким образом, существенно увеличивают проницаемость пород призабойной зоны в скважинах.

Многократный разрыв пласта можно осуществлять следующими способами:

    1. Проводить гидравлический разрыв по обычной технологии, а затем в скважину вместе с жидкостью нагнетать вещества, временно закупоривающие трещину или закрывающие перфорационные отверстия против интервала разрыва. Это дает возможность вновь повысить давление и разорвать пласт в другом месте. В качестве закупоривающего материала были использованы зернистый нафталин, эластичные шарики из пластмассы и др. При освоении скважин нафталин растворяется в нефти и удаляется из трещины, а шарики выносятся потоком на поверхность. 2. Зону, предназначенную для образования трещин, можно каждый раз разобщать двумя пакерамн или гидравлическими затворами и проводить разрыв пласта по обычной технологии. 3. Осуществлять многократный разрыв с изоляцией нижележащих прослоев продуктивного пласта песчаной пробкой.

В разрезах с большим числом прослоев глин, т. е. с низкой проницаемостью по вертикали, весьма желательно создавать вертикальные трещины, соединяющие продуктивные пропластки. Для образования вертикальных трещин применяют нефильтрующиеся жидкости разрыва. Вертикальные трещины могут образоваться также при нагнетании фильтрующихся жидкостей разрыва при быстром повышении расхода жидкости и давления на забое.

Для облегчения разрыва пластов в заранее выбранном месте предварительно можно осуществлять пескоструйную перфорацию или торпедирование колонны: этот же участок разобщается (герметизируется) пакерами.

На промыслах СССР ежегодно проводилось свыше 2500 операций гидроразрыва пластов. Эффективность ГРП составляет примерно 70 %.

Технология гидроразрывов пласта быстро усовершенствуется. Работниками научно-исследовательских институтов и промыслов предложено большое число различных вариантов поинтервального разрыва пласта, методов предохранения цементного кольца от разрушения или разрыва и различных технологических приемов, улучшающих результаты разрыва.

Весьма важным вопросом при проведении гидроразрыва, требующим особого внимания, является определение местоположения и характера образующихся трещин. Эта задача успешно решается методами радиоактивного каротажа, проводимого после введения в трещину смеси обычного и радиоактивного песка. Активацию песка осуществляют адсорбцией и закреплением на его поверхности радиоактивных веществ. Адсорбированный активный компонент можно закрепить путем покрытия песчинок нерастворимыми в воде и нефти клеящими веществами. На кривых гамма-каротажа в интервале образования трещин имеются четкие аномалии радиоактивности.

Похожие статьи




Технология проведения гидроразрыва пласта - Проектирование комплекса оборудования для гидроразрыва пласта

Предыдущая | Следующая