Исследование напряженно-деформированного состояния фундамента вертикального резервуара с учетом динамики эксплуатационных нагрузок


Исследование напряженно-деформированного состояния фундамента вертикального резервуара с учетом динамики эксплуатационных нагрузок

В настоящее время в период эксплуатации вертикальных стальных резервуаров (далее РВС) наблюдается тенденция роста аварийных ситуаций, связанных с потерей несущей способности отдельных элементов, потерей устойчивости и неравномерными осадками основания [1-3, 6-12]. Причинами возникновения таких ситуаций могут быть ошибки в проектировании, брак строительно-монтажных работ, изменение гидрогеологических условий на площадке эксплуатируемого РВС, а также нагрузки, не учитываемые на стадии проектирования, к которым можно отнести многократно повторяющиеся в период эксплуатации нагрузки от давления хранимого продукта при заполнении и опорожнении резервуара.

Для оценки напряженно-деформированного состояния (далее НДС) фундамента под РВС с учетом влияния нагрузок от веса хранимых продуктов при заполнении резервуара авторами выполнено численное моделирование на объемных конечно-элементных моделях в ПК "Лира"[4, 5].

К моделированию был принят фундамент под резервуар для хранения нефтепродуктов вместимостью 5 тыс. м3, представленный монолитной железобетонной плитой диаметром 20 м, толщиной 500 мм с монолитным железобетонным ребром (кольцом) под стенкой резервуара высотой 1 м и шириной 2 м с выступами за пределы стенки резервуара на 1 м и устройством песчаной подушки внутри кольца.

Расчет выполнен шаговым методом последовательных нагружений с учетом изменения расчетной схемы на каждом шаге приложения нагрузки[5]. На 1-м шаге моделируется нагрузка от веса фундамента, 2-й шаг - моделируется добавление нагрузки от веса конструкций резервуара при его сооружении (стены, днища и крыши), 3-й шаг - добавление нагрузки от давления нефтепродуктов при заполнении резервуара.

Грунтовое основание моделировалось сплошной, однородной, упруго-пластической средой, предусматривающей образование зоны упругих деформаций, в которой распределение напряжений подчиняется закону Гука, и зоны пластических деформаций, в которой распределение напряжений происходит в соответствии с условием предельного состояния Кулона-Мора.

Нагрузка от веса конструкций резервуара прикладывалась к железобетонному ребру на расстоянии 1 м от края по периметру опирания стенки на ребро. Нагрузка от давления нефтепродуктов при моделировании заполнения представлена равномерно распределенной по днищу резервуара. Для расчета величины нагрузки принята средняя плотность нефтепродуктов 870 кг/м3. напряженный деформированный фундамент нагрузка резервуар

Для построения моделей использовались физически нелинейные конечные элементы (КЭ): для фундамента - КЭ №236 и №234, для грунтов - КЭ №276 и №274, предназначенные для моделирования работы грунта на сжатие с учетом сдвига в соответствии с теорией прочности Кулона-Мора.

Оценка НДС производилась для разных инженерно-геологических условий (основание было представлено суглинками, супесями и глинами), и разных характеристик материала фундамента (при использовании бетонов В15, В20 и В25).

Анализ результатов расчета показал, что во всех исследуемых случаях происходит увеличение напряжений в фундаменте при приложении нагрузки от веса конструкций резервуара (2-й шаг нагружения) и снижение напряжений при моделировании заполнения резервуара нефтепродуктами (3-й шаг нагружения). При этом при моделировании возведения металлоконструкций резервуара максимальные напряжения в фундаменте зафиксированы в кольцевой части под стенкой резервуара, а при заполнении резервуара нефтепродуктами максимальные напряжения наблюдались в плитной части. Максимальные значения напряжений в фундаменте зафиксированы при моделировании из бетона класса В25, а максимальные изменения напряжений в фундаменте отмечены при моделировании из бетона В15. В грунтах максимальные значения напряжений зафиксированы в глинах. Максимальные изменения напряжений в грунтах на 1-м шаге нагружения зафиксированы в супеси, на 2-м - в суглинках. Максимальные изменения напряжений в грунтах на 3-м этапе нагружения отмечены в суглинках при моделировании фундамента из бетона В15 и в глинах, при моделировании фундамента из бетона классов В20 и В25.

В результате расчета были найдены зависимости максимальных напряжений в фундаменте от модуля деформации бетона и модуля деформации грунтов для каждого шага нагружения (табл. 1).

Таблица 1

Зависимости максимальных напряжений в фундаменте от модуля деформации бетона и модуля деформации грунтов

Этап

Зависимость

I - сооружение фундамента

II - сооружение металлоконструкций

III - заполнение нефтепродуктами

Изменение напряжений в фундаменте на разных этапах нагружения в большей степени зависит от деформационных характеристик материала фундамента.

Характер изменения напряжений при сооружении резервуара и при заполнении нефтепродуктами будет зависеть от конструктивных параметров резервуара, его диаметра и вместимости, с учетом которых рассчитывается нагрузка от веса нефтепродуктов.

При многократном опорожнении и заполнении резервуара нефтепродуктами напряжения в фундаменте и элементах конструкции могут возрастать.

Важно отметить, что неравномерная осадка основания, осадка типа "крен", и, как следствие, смещение центра тяжести, могут привести к неравномерному распределению нагрузки от давления хранимого продукта в опорной поверхности фундамента в местах контакта с днищем резервуара и к увеличению напряжений в стенке и соединительных узлах уторного шва.

Литература

    1. Волчков А. Р. Фундаменты вертикальных стальных резервуаров для нефти и нефтепродуктов // Наука и технологии трубопроводного транспорта нефти и нефтепродуктов. 2014. №4(16). С. 52-56. 2. Мансурова С. М., Тляшева Р. Р., Ивакин А. В., Шайзаков Г. А., Байрамгулов А. С. Оценка напряженно-деформированного состояния стального цилиндрического резервуара с учетом эксплуатационных нагрузок // Нефтегазовое дело: электронный научный журнал. 2014. №1.С. 329-343. 3. Оленев Н. М. Хранение нефти и нефтепродуктов. М.: Недра. 1964. 429с. 4. Прокопов А. Ю., Акопян В. Ф., Гаптлисламова К. Н. Изучение напряженно-деформированного состояния грунтового массива и взаимного влияния подземных конструкций существующих и вновь возводимых сооружений в береговой зоне морского порта Тамань // Инженерный вестник Дона, 2013, №4 5. Прокопова М. В., Ткачева К. Э., Васьковцова Я. С. Моделирование работы конструкций с учетом этапности возведения // Совершенствование технологии строительства шахт и подземных сооружений. Вып. 17. Донецк: Норд-Пресс, 2011. С. 45-47. 6. Сильницкий П. Ф., Тарасенко М. А., Тарасенко А. А. Расчет фундаментного кольца с дефектами // Нефть и газ. 2011. №5. С. 75-77. 7. Тарасенко А. А., Чепур П. В. Эволюция взглядов на вопросы определения величины допустимых осадок резервуаров // Фундаментальные исследования.2014. №12. С. 67-84. 8. Фундаменты стальных резервуаров и деформации их оснований.- М.: АСВ. 2009. 336 с. 9. Чирков С. В., Тарасенко А. А., Чепур П. В. Конечно-элементная модель вертикального стального резервуара с усиливающими элементами при его подъеме гидродомкратами // Фундаментальные исследования. 2014. №9. С. 1003-1007. 10. Чмшкян А. В. Взаимодействие конического штампа с неоднородным основанием // Инженерный вестник Дона, 2012, №4, Ч. 2.URL: ivdon. ru/ru/magazine/archive/n4p2y2012/1391. 11. Khmeleva A. I. Foundations of vertical steel tanks for oil and oil products // Modern scientific researches and innovations. 2015. №5.pp. 60-66. 12. Tarasenko A. A., Silnitskiy P. F., Tarasenko D. A. The problems of designing the heat insulation for bases of vertical steel cylindrical tanks constructed in the cryolithozone / Tenth Internmational conference on permafrost. TICOP. Resources and risks of permafrost areas in a changing world Proceedings. 2012. pp. 583-584.

Похожие статьи




Исследование напряженно-деформированного состояния фундамента вертикального резервуара с учетом динамики эксплуатационных нагрузок

Предыдущая | Следующая