Правила применения био-логических элементов - Молекулярная элементная база живой формы материи

Вспомним, что каждый логический элемент микроэлектронной техники, перед тем как выполнить свои функции, должен быть подключен к источнику питания и к соответствующим цепям общей схемы.

Для этой цели каждый элемент имеет свои входные и выходные цепи.

Определенная аналогия наблюдается и при подключении биохимических элементов к цепям биологических молекул. Например, каждая аминокислота, как элемент, состоит из двух частей - константной, одинаковой для всех аминокислот части, к которой относится углеводородный скелет и его функциональные группы (аминогруппа и карбоксильная группа), и вариабельной - боковой цепи (или R-группы), которая имеет в каждой аминокислоте присущие только ей природные свойства и структурные отличия.

В связи с этим аминокислоты различаются между собой только боковыми R-группами, посредством которых в полипептидной цепи белка осуществляется физико-химическое воплощение молекулярной биологической информации. Для включения аминокислоты в общую полипептидную цепь используется только константная часть элемента. "Ковалентная пептидная связь образуется путем отщепления компонентов воды от аминогруппы свободной аминокислоты и карбоксильного конца пептида, поэтому аминокислотные звенья, входящие в состав полипептида, обычно называют остатками" [1].

В результате длинная ковалентная цепь состоит из монотонно чередующихся остатков константных частей био-логических элементов (аминокислот), а к каждому углеродному атому основной цепи присоединены вариабельные части аминокислотных остатков - боковые R-группы. Таков принцип записи молекулярной биологической информации в полипептидной цепи белка в процессе трансляции генетической информации.

Каждая из боковых R-групп основного остова цепи имеет одно из двадцати кодовых (смысловых) значений, поэтому аминокислотные звенья белка являются материальными носителями информации.

Кратко рассмотрим пример записи информации в молекулярных цепях ДНК или РНК с помощью другой системы элементов - нуклеотидов. Каждый нуклеотид, как био-логический элемент, также состоит из двух частей - константной, к которой относится пятиуглеродный сахар и фосфорная кислота, и вариабельной - азотистого основания, при помощи которого, как известно, кодируется и передается генетическая информация.

Следующие друг за другом нуклеотиды соединяются с помощью фосфодиэфирной связи, поэтому ковалентные остовы цепей нуклеиновых кислот состоят из монотонно чередующихся константных частей биохимических элементов (нуклеотидов) - фосфатных и пентозных групп, а азотистые основания "можно рассматривать как боковые группы, присоединенные к остову на равных расстояниях друг от друга" [1]. Здесь также наглядно видно, что длинный остов молекулярной цепи выполняет роль носителя информации, на котором в виде различных вариабельных групп (азотистых оснований) записана генетическая информация. Фиксированный порядок следования нуклеотидов в ДНК содержит всю генетическую информацию, которой располагает живая клетка.

Мы убеждаемся, что линейная последовательность любых биохимических элементов в молекулярной цепи всегда представляет собой химическую запись определенной биологической информации. Указанные примеры говорят о существовании общих закономерностей молекулярной биохимической логики и наличии общих принципов и правил применения и использования различных био-логических элементов (химических букв и символов) в живых системах.

Похожие статьи




Правила применения био-логических элементов - Молекулярная элементная база живой формы материи

Предыдущая | Следующая