Защита полимерных строительных материалов от старения - Деструкция полимерных материалов

Проблема защиты полимерных строительных материалов от старения является комплексной и должна учитывать все перечисленные факторы, приводящие к потере полимерными материалами эксплуатационных характеристик.

Поскольку главными деструктирующими факторами воздействия на полимеры являются термоокислительные процессы при одновременном воздействии света, приводящие к цепным радикальным реакциям, меры защиты должны быть направлены на подавление этих процессов. Прежде всего, следует сказать, что для защиты полимерных материалов от вредного воздействия кислорода и стабилизации их свойств во времени, можно использовать малые добавки низкомолекулярных веществ, которые могут прерывать развитие цепных реакций окисления. Такие вещества называют ингибиторами цепных реакций, а в нашем конкретном случае стабилизаторами или противостарителями. Вещества, препятствующие процессу окисления называют также антиоксидантами.

По механизму действия антиоксиданты делятся на две большие группы. К первой относятся вещества, обрывающие окислительную цепь реакций (ингибиторы), реагирующие со свободными радикалами на стадии их образования. К таким веществам в первую очередь относятся антиоксиданты аминного и фенольного типа.

Ингибиторы увеличивают длину индукционного периода окисления на кинетической кривой (рис.5.1). После исчерпания ингибитора процесс окисления продолжается.

Ко второй группе относятся вещества, предотвращающие разложение гидроперекисей по радикальному механизму, т. е. разрушающие гидроперекиси до неактивных для развития окислительной цепи продуктов. Это так называемые антиоксиданты превентивного действия, к ним относятся сульфиды, меркаптамы, тиофосфаты, соли диалкилдитиокарбаминовых кислот.

Защитное действие антиоксидантов, которое характеризуется величиной индукционного периода на кривой поглощения кислорода при заданной температуре, зависит от количества примененного антиоксиданта. Существует критическая его в полимере, ниже которой защитное действие не проявляется, и оптимальная концентрация, при которой индукционный период имеет наибольшую длину (рис. 5.2).

Антиоксиданты превентивного действия, например тиофосфаты, обычно не влияют на длину индукционного периода, но сильно снижают скорость присоединения кислорода к полимеру в главном периоде процесса.

Чрезвычайно важным в практическом отношении является синергизм, т. е. взаимоусиление, действия смеси двух антиоксидантов первой и второй групп.

Если применить два слабых антиоксиданта из этих групп раздельно, то величина индукционного периода будет невелика. Если же применить их смесь, общая концентрация которой в полимере будет постоянна, то наблюдается увеличение индукционного периода по сравнению с аддитивной величиной, которое имеет резкий максимум при близких молярных концентрациях этих антиоксидантов (рис. 5.3).

В общем, проблема стабилизации полимеров является сложной и многоплановой, требующей учета множества факторов. Теоретические и практические наработки сегодняшнего дня позволили разработать эффективные методы комплексной стабилизации различных классов полимеров. При этом оценка эффективности противостарителей осуществляется не только по активности в химических реакциях, но и по растворимости в полимере, летучести, термостабильности и другим факторам. Полиэтилен, например, хорошо защищается от термоокислительной деструкции в присутствии небольших количеств (0,01 %) фенольных или аминных антиоксидантов. Для защиты полиэтиленовых пленок от действия ультрафиолетовых лучей применяют бис-феноны.

Применяемые в качестве волокнообразующих полимеров гетероцепные полиамиды и полиэфиры, хотя и относительно более устойчивы к старению, чем углеводородные полимеры, также требуют стабилизации. Они весьма чувствительны у ультрафиолетовому свету, хотя достаточно термостойки. В качестве стабилизаторов здесь применяют диариламины и аминокетоны. Так, введение в капроновые волокна стабилизатора N, N'-ди-в-нафтил-пара-фенилендиамина способствует значительно большему сохранению их прочности при нагревании (рис. 5.4).

Значительно более стойкими к солнечному свету являются полиэфиры и волокна и пленки из них. Для полиэтилентерефталата (лавсан) актуально погашение термоокислительных деструкционных процессов. Для лавсановых волокон применяют антиоксиданты, обрывающие окислительные цепи (бис-фенолы, ароматические амины).

Похожие статьи




Защита полимерных строительных материалов от старения - Деструкция полимерных материалов

Предыдущая | Следующая