Типы выветривания - Кора выветривания: формирование и практическое значение

Физическое выветривание.

Физическое выветривание (Рис 1.1) - это дробление материнских пород, их дезинтеграция без существенного изменения состава минеральных зерен. Такое выветривание характерно для Арктики, Антарктики, горных районов, областей аридных зон - пустынь, полупустынь со скудным содержанием влаги в почве, весьма малым годовым количеством осадков при сильном солнечном нагреве, со значительным колебанием суточных и сезонных температур.[1]

следы физического выветривания[www.vevivi.ru]

Рис.1.1 Следы физического выветривания[www. vevivi. ru].

Физическое выветривание происходит, в основном, под действием изменения температуры, замерзания-оттаивания воды, действия сверлящих (роющих) животных, животных, корневой системы растений, кристаллизации содержащихся в капиллярной воде солей. Существенных изменений состава обломков при этом не происходит.

Среди факторов выветривания отметим, в первую очередь, изменение температуры - суточные, сезонные.

Горные породы являются агрегатом зерен различного состава, которые по разному реагируют на изменение температуры. Они обладают отличающимися коэффициентами объемного и линейного расширения, т. е. при нагревании на 1?С увеличивают свой объем или длину на разную величину. Например, у кристаллов кальцита по направлениям, параллельным оси симметрии третьего порядка и перпендикулярным к этой же оси, коэффициенты различаются существенно, составляя 25,6*10-6 и 5,5?10-6 соответственно. Не менее значительны различия этих коэффициентов у разных минеральных индивидов. Так у кварца он составляет 3,1*10-4, у ортоклаза - 1,7?10-3. При нагревании гранитной породы до 50?С размер каждого зерна кварца увеличивается на 15%. Поскольку температура в течение чуток меняется, то различия в коэффициентах объемного и линейного расширения приводят к ослаблению связей между зернами. Порода растрескивается и делится на обломки. При физическом выветривании действуют и силы кристаллизации. Вода при замерзании, превращаясь в лед, увеличивает свой объем на 9%. При этом порода как бы расклинивается по трещинам и разрушается. Отмечается также влияние тектонических напряжений. Под их воздействием пласты пород изгибаются, сминаются с образованием разрывов, трещинноватости, т. е. происходит нарушение целостности породы. Ударное действие волны, абразия, и ветра, корразия - важные факторы физического выветривания. Волны морского прибоя и течения приводят к механическому разрушению коренных пород. Ударная волна, несущая камни, песчинки, действует на породы берега, вызывая их обрушение и растворение. Подводная абразия действует на дне озер, морей, океанов, на глубинах до нескольких десятков метров в озерах, морях и до 100 и более метров в океанах. Явление абразии и корразии - механическое разрушение, шлифование, истирание поверхности породы при трении и столкновении с твердыми частицами пород, происходят не только за счет переноса частиц движением воды, но и при переносе ветром, льдом, при перемещении под действием силы тяжести. Эрозионная деятельность льда проявляется в Арктике, в Антарктике, в хонах высоких широт, в высокогорьях. Льды, сползая, истирают и дробят породы.

Составной частью физического выветривания, эрозии и денудации является действие гравитационных факторов, определяющих начальную дифференциацию обломочного материала. Более крупные обломки накапливаются на склонах, у подножий, в понижениях рельефа. Более мелкие уносятся водой, ветром, иногда на сотни километров от разрушающего массива.

В зависимости от ведущего фактора, определяющего процессы разрушения пород, выделяется несколько разновидностей физического выветривания - морозное (Рис 1.2), снежное, инсоляционное (в пустынях), биологическое, ледовое. При механическом выветривании действует комплекс процессов, характерный и для химического разложения, но при резком преобладании физического разрушения горных пород. Не перемещенные продукты, в виде разновеликих обломков, остаются на месте разрушения с постепенным переходом в неизменную породу, образуя физический элювий. В. Т. Фролов называет такой элювий каменистыми развалами или каменными руинами. Мощность слоя физического элювия различна и может достигать 30-40 м.

результат морозного выветривания [ www.vevivi.ru]

Рис.1.2 Результат морозного выветривания [ www. vevivi. ru].

К числу остаточных образований относятся остающиеся на месте грубообломочные продукты механического дробления пород - перлювий после вымывания или выдувания тонких частиц, мелкозема. Образование перлювия происходит при участии течений, волнений, деятельности ветра, грунтовых вод. При этом могут образоваться скопления конкреций, фаунистических остатков, тяжелых минералов. В. Т. Фролов считает их горизонтами конденсации по механизму накопления компонентов, сходному с повышением концентрации элементов при выпаривании.[3]

Механическое выветривание происходит под механическим воздействием посторонних агентов. Особенно большое разрушительное действие оказывает замерзание воды. Когда вода попадает в трещины и поры горных пород, а потом замерзает, она увеличивается в объеме на 9 - 10%, производя при этом огромное давление. Такая сила преодолевает сопротивление горных пород на разрыв, и они раскалываются на отдельные обломки. Наиболее интенсивное расклинивающее действие производит замерзающая вода в трещинах горных пород. Но под влиянием замерзающей воды легко дробятся и породы с высокой пористостью, в которых поровое пространство занимает около 10 - 30% объема (песчаники и другие осадочные породы). Процессы, связанные с воздействием периодически замерзающей воды, часто называют морозным выветриванием. Оно наблюдается в высоких полярных и субполярных широтах, а также в горных районах выше снеговой линии, где в ряде случаев проявляется и температурное выветривание.

Такое же механическое воздействие на горные породы оказывают корневая система деревьев и роющие животные. По мере разрастания деревьев увеличиваются в размерах их корни. Они давят с большой силой на стенки трещин и раздвигают их как клинья и тем самым вызывают раскалывание породы на отдельные глыбы и обломки. Часть таких глыб выталкивается вверх. Механическое воздействие оказывают и различные роющие животные, такие, как земляные черви, муравьи, грызуны и др.

Дезинтеграцию пород вызывает также рост кристаллов в капиллярных трещинах и порах. Это хорошо проявляется в условиях сухого климата, где днем при сильном нагревании капиллярная вода подтягивается к поверхности и испаряется, а соли, содержащиеся в ней, кристаллизуются. Под давлением растущих кристаллов капиллярные трещины расширяются, что и приводит к нарушению монолитности горной породы и ее разрушению [6].

Химическое выветривание.

Когда механическое выветривание разбивает породу на части, увеличивается общая площадь ее поверхности, подвергающейся внешним воздействиям, и возрастает химическое выветривание. Химическое выветривание разрушает породу посредством реакций, в которых участвуют химические элементы породы и комплексы минералов. Они изменяют химический состав и форму породы. Это более медленный процесс, чем физическое выветривание.

следы химического выветривания [www.vevivi.ru ]

Рис.1.3 Следы химического выветривания [www. vevivi. ru ].

Химическое выветривание происходило многие миллионы лет, но с добавлением антропогенных промышленных выбросов в атмосферу и гидросферу Земли некоторые формы химического выветривания усилились.

Химическое выветривание протекает одним из следующих путей:

    * Окисление = реакция с кислородом 02. * Гидролиз = реакция с водой н20. * Действие кислот = реакция с кислотами (н2СО3, h2S04, h2So3).

Самой важной природной кислотой является угольная кислота, которая образуется, когда двуокись углерода растворяется в воде

С02 + н20 = н2С03.

Карбонатные осадочные породы, такие как известняк и мрамор, особенно чувствительны к химическому выветриванию такого типа. Выемки и канавки, которые часто видны на выходах карбонатных пород, представляют собой примеры химического выветривания.

Некоторые химические реакции увеличивают скорость химического выветривания. По всей видимости, наиболее известное и самое достойное освещения в печати химическое выветривание происходит под действием кислотных дождей. Кислотные дожди образуются, когда химические вещества в атмосфере реагируют с водой и возвращаются на землю в кислотной форме в виде дождя. Когда это происходит, этот процесс известен как выщелачивание. Если кислотный дождь попадает на известняковые статуи, монументы и надгробия, он может растворить, обесцветить или нарушить форму их поверхности в результате реакции с химическими элементами породы. Исторические ценности, такие как статуи и здания, построенные сотни и тысячи лет назад, страдают от такого рода выветривания, побочного продукта промышленного загрязнения.

Химическое выветривание приводит к замещению исходных минералов горных пород новыми минералами. Эти замещенные минералы могут обладать совсем другими механическими свойствами, такими как прочность и ковкость. Например, если образуются глины, они могут быть не такими неподатливыми, какими могли быть исходные породы, а гораздо более пластичными. Химическое выветривание неизменно ослабляет горные породы, увеличивая шансы для перемещения масс.

    * Окисление имеет место, когда анионы кислорода реагируют с катионами минеральных веществ, разрушая их и формируя окислы, такие как оксид железа (Fe203), делая исходное вещество более мягким. * Растворимость - это способность минеральных веществ растворяться в воде.[3] Некоторые минеральные вещества легко растворяются в чистой воде. Другие гораздо лучше растворяются в кислотном растворе. Дождевая вода, которая соединяется с двуокисью углерода, образуя угольную кислоту

Н20 + С02 = Н2СО3,

Становится кислотной естественным образом.

    * Гидролиз имеет место, когда молекулы воды и минеральных веществ реагируют друг с другом, образуя новые минералы. Преобразование полевого шпата, ортоклаза, в глину является примером гидролиза. * Выщелачивание происходит, когда находящиеся в окружающей среде кислоты, такие как угольная кислота (вода), гумидная кислота (почва) и серная кислота (кислотные дожди), вступают в реакцию с минералами и растворяют минеральные анионы и катионы.

В химическом выветривании почти всегда участвует вода. Двуокись углерода, растворяясь в дождевой воде, образует угольную кислоту, которая растворяет известняки и переносит их в виде раствора карбоната кальция. Когда известняки растворяются на протяжении длительного периода времени подземными течениями, образуются замысловатые пещеры и каналы.

Химическое выветривание, происходящее быстрее в известняках, чем в песчаниках, ускоряется при увеличении температуры. Оно протекает быстрее всего на острых тонких краях горных пород, отличающихся большей площадью поверхности, но меньшим объемом. Вследствие этого они быстрее эродируются. То же самое происходит с постройками из известняка. В древнегреческих руинах, возраст которых превышает 2500 лет, можно увидеть изрытые, вытравленные кислотами известняковые колонны, края и поверхность которых подверглись разрушению в результате выщелачивания[7].

Биохимическое выветривание.

Биохимическое выветривание - это механическое разрушение и химическое изменение горных пород и минералов под действием растительных и животных организмов и продуктов их жизнедеятельности.

Корни растений, проникая в трещины пород, расклинивают их, вызывая механическое разрушение. Кроме того, корни растений выделяют органические кислоты, которые растворяют минералы, усиливая процесс химического выветривания. Также действуют на минеральные соединения органические кислоты, образующиеся при гниении растительных и животных остатков.

Важную роль в биологическом выветривании играют микроорганизмы (бактерии, грибы), лишайники, землерои (земляные черви, личинки насекомых, кроты, суслики и др.). Многочисленные микроорганизмы вызывают биохимические процессы в почве. Так, нитрифицирующие бактерии образуют азотную кислоту, а серобактерии - серную кислоту. Кислоты активно разлагают алюмосиликаты и другие минералы. Лишайники выделяют специфические лишайниковые кислоты, действующие на породы. Кроме того, гифы лишайников проникают в тонкие поры горных пород, вызывая их физическое разрушение.

Корни растений взаимодействуют с минеральной частью почвы, избирательно поглощают элементы питания. После отмирания растений в верхних слоях почвы накапливаются азот, фосфор, калий, кальций, магний, сера и другие биогенные элементы. Листья растений поглощают из воздуха диоксид углерода, который в процессе фотосинтеза соединяется с водой, образуя углеводы. Таким образом, из диоксида углерода, воды, зольных элементов и азота синтезируется органическое вещество. Азот появляется в породе в результате жизнедеятельности микроорганизмов, фиксирующих азот из атмосферного воздуха. После отмирания растений их органические остатки частично превращаются в новые органические соединения и накапливаются в виде гумуса в верхнем слое земной поверхности, частично - минерализуются и становятся вновь доступными для новых поколений растений[13][10].

Подводное выветривание.

Процессы выветривания происходят не только на суше, но и на дне морей и океанов. Здесь под воздействием минерализованной морской воды, ее температур, давления и газового режима идет разложение горных пород, минералов и создаются элювиальные новообразования, химические, метасоматические и биологические продукты. Данная совокупность химических, биохимических процессов, приводящих к изменению состава минеральных тел, находящихся в море как во взвешенном состоянии, так и на его дне, имеет специальное название - гальмиролиз. Гальмиролизу подвергаются не только минеральные компоненты, поступающие на морское дно с суши, но и продукты вулканических извержений.

Главные факторы подводного разложения - вода, биос, газовый режим, соленость, давление, температура, а слой придонной воды содержит взвешенные частицы и микроорганизмы. Средняя температура зоны подводного разложения более низкая, по сравнению со средней температурой континентальных областей химического выветривания. Давление возрастает по мере увеличения глубины донного осадка от 20 атмосфер на глубине 200 м, до 1000 атмосфер на глубине 10170 м, что влечет за собой рост растворимости твердых веществ и газов, а также активизацию различных химических процессов, влияет на их скорость, направление и эффективность. Заметнее всего изменения давления проявляется в реакциях с участием газов, в частности кислорода и углекислого газа, количество которых в результате понижения температуры и давления на больших глубинах увеличивается, способствуя более энергичному протеканию процессов окисления и карбонатизации. Эффективность гальмиролиза зависит также от скорости накопления осадков и жизнедеятельности организмов, прежде всего бактерий.

Быстрое накопление осадков не способствует развитию процессов подводного выветривания, так как только что осажденный материал лишается длительного контакта с придонной водой изза перекрытия его новым слоем осадочных частиц. Морская вода не успевает оказать на осадок заметного химического воздействия. Известно, что в водоемах, морских, океанических, уменьшение скорости осадконакопления отмечается по мере удаления от береговой линии. Поэтому максимально явления гальмиролиза проявлены в более глубоководных частях бассейна. В литературе (Фролов, 1984, 1995) указывается на образование при гальмиролизе подводных панцирей различного состава - известняковых, доломитовых, железо-марганцевых, фосфатных, пиритных. Мощности их по сравнению с подобными наземными образованиями несколько меньше и составляют, обычно не более 1м. условия образования, по видимому, сходны с таковыми для коры выветривания на суше.

Не исключается вертикальная миграция растворенного вещества и цементация частиц. В результате гидролиза, гидратации, окисления, восстановления, миграции, осаждения при гальмиролизе синтезируются новые минералы - глинистые, цеолиты, карбонаты, гидроксиды железа и марганца, глауконит, шамозит, фосфориты, происходит образование пород, например, фосфатных (Фролов, 1995). Что касается бактериальной микрофлоры и ее роли в подводном выветривании, то признается участие бактерий в процесах гальмиролиза в качестве катализаторов, ускоряющих химические процессы, но не меняющие их общей направленности и продуцирующие собственные продукты[4].

Вывод по первой главе

Выветривание является одним из главных процессов на Земле. Выветривание - это изменение горных пород любого состава и структуры, которое происходит в поверхностных условиях под совокупным действием физических, химических и биохимических процессов. Под действием этих процессов горные породы и слагающие их минералы в приповерхностной части земной коры преобразовываются. Выветривание разделяется по типам: физическое, химическое, биохимическое, подводное.

Физическое выветривание - это дробление материнских пород, их дезинтеграция без существенного изменения состава минеральных зерен.

В физическое выветривание входит: температурное выветривание, механическое выветривание, а в механическое выветривание входит еще и морозное выветривание.

Основную роль в химическом выветривании играет влага, особенно насыщенная газами и химическими соединениями.

В химическое выветривание входят процессы как: окисление, гидратация, растворение, гидролиз.

Биохимическое выветривание - это механическое разрушение и химическое изменение горных пород и минералов под действием растительных и животных организмов и продуктов их жизнедеятельности.

Главные факторы подводного разложения - вода, биос, газовый режим, соленость, давление, температура, а слой придонной воды содержит взвешенные частицы и микроорганизмы. Средняя температура зоны подводного разложения более низкая, по сравнению со средней температурой континентальных областей химического выветривания.

Похожие статьи




Типы выветривания - Кора выветривания: формирование и практическое значение

Предыдущая | Следующая