Экологические функции почв - Роль почвы в формировании и трансформации состава атмосферы Земли

Литосферные функции

Проблема литосферных функций почвы на первый взгляд может показаться неправомочной. Действительно, если влияние почвенного покрова на взаимодействующую с ним атмосферу и гидросферу очевидно в связи с подвижностью и способностью к перемешиванию контактирующих с почвой воздушных и водных масс, то воздействие почвы на каменную оболочку воспринимается как малозначительное. Поэтому не случайно длительное время углубленно изучалась лишь роль литосферы в почвообразовании и были установлены основные особенности почвообразовательного процесса на различных исходных субстратах. Однако феномен обратной связи ощутим. Литосфера своими поверхностными слоями не только определяет направление и разнообразие почвообразовательного процесса, но и сама во многих проявлениях и трансформациях зависит от жизни и динамики покрывающей ее тонким слоем почвы. В первую очередь воздействие почвообразования испытывают на себе коры выветривания и осадочная оболочка в целом. Но и другие составляющие литосферы, если брать геологические масштабы времени, связаны прямо или чаше всего опосредованно с событиями, реализующимися в поверхностном слое.

Для понимания существа взаимосвязей почвы и литосферы, несомненно, первостепенное значение имеет динамика каменной оболочки. Отмечается большое значение обмена веществом и энергией между континентальными сухопутными регионами (главными носителями почвенного покрова) и океаническими бассейнами.

При этом отмечается особое значение в процессах взаимодействия и обмена веществом между континентами и океаном переходных зон. Проблема взаимодействия почвенной оболочки и литосферы не может исчерпываться только глобальным аспектом, ярким выразителем которого оказываются исследования взаимосвязи континентов и океанов.

Не менее важной самостоятельной стороной проблемы является всестороннее изучение экзогенных геологических процессов, их переплетений с процессами почвообразования.

Почва - защитный слой литосферы и фактор развития литосферы

Верхняя часть литосферы, граничащая с гидросферой и воздушной оболочкой, находится в особых термодинамических и геохимических условиях. Поверхностные горизонты литосферы испытывают постоянное разрушающее воздействие ряда агентов. На континентах особую разрушающую силу несут с собой движущиеся воды и ветер, наиболее интенсивно воздействующие на незащищенные почвенным и растительным покровом дневные горизонты геологических пород.

Без почвенного слоя поверхность литосферы была бы подвержена мощному фронтальному эрозионному воздействию текучих вод. Не менее тяжелые потери возникают от дефляции, приобретающей бурный, затяжной характер при уничтожении почвенно-защитного чехла.

На Земле в силу мощного проявления экзогенеза качественно иное структурно-динамическое состояние литосферы, которая оказалась гораздо более продвинутой в эволюционном плане. Одна из важнейших причин этого -- наличие на нашей планете развитого почвенного покрова.

Благодаря гидросферным функциям почвы реализуются в течение многих миллионов лет влагообороты на Земле, имеющие столь существенное значение в глубоком экзогенном преобразовании каменной оболочки. С циркуляцией воды во внешней области Земли связано функционирование на нашей планете мощного комплекса экзогенных процессов, оказывающих огромное влияние на другие компоненты - литосферу, органический мир, вовлечение их в глобальные круговороты.

Значительный вклад вносит почва в эффект сбалансированности развития литосферы - уравновешенность эндогенных и экзогенных факторов, внутренних и внешних источников энергии литосферы и существование процессов возврата в каменную оболочку теряемого ею вещества.

Преобразование приповерхностной части литосферы.

В биохимическом преобразовании верхнего слоя литосферы почва принимает прямое и косвенное участие. Косвенное влияние заключается в том, что без почвы не было бы активного биохимического преобразования литосферы, потому что в почве обитают организмы, осуществляющие процессы преобразования.

Здесь почва выступает источником органических кислот. При взаимодействии фульвокислот с первичными минералами наряду с разложением последних мог происходить и синтез глиняных минералов, при котором частично фиксируется мобильный магний.

Кроме кислот, возникающих при гумусообразовании, важными агентами разрушения и изменения минералов литосферы являются попадающие в почву продукты жизнедеятельности обитающих в ней микроорганизмов. В результате совместного действия эти агенты оказываются важнейшими факторами мобилизации химических элементов, законсервированных в кристаллических решетках, которые идут на питание различных живых существ биосферы.

Процесс микробиологической деструкции минералов материнских пород наглядно проявляется на ранних стадиях почвообразования, когда в исходном субстрате еще не накопилось зольных веществ и минералы породы оказываются почти единственным источником питания живых организмов.

Среди агентов преобразования минералов заметную роль могут играть биогенные щелочи, вклад которых в процессы выветривания остается пока слабо изученным. В то же время образование биогенных щелочей - широко распространенный в природе процесс, который в отдельных микроочагах может протекать даже в кислых подзолистых почвах. Основным источником биогенных щелочных соединений могут быть соли слабых органических кислот и сильных оснований, образующихся при разложении растительных остатков, среди продуктов минерализации которых оказываются карбонаты и бикарбонаты. Щелочи образуются также при аммонификации белковых веществ. Они могут накапливаться в почве после внесения навоза и других азотсодержащих соединений, а также при разложении богатых основаниями пород.

В процессах выветривания в щелочных почвах большое значение имеет биогенная сода. Образование микроорганизмами карбонатов и бикарбонатов при минерализации богатого опада приводит к сильному повышению рН почвенных растворов, что вызывает разрушение алюмосиликатов.

К числу реагентов, образуемых с помощью микробов, относятся также сильные восстановители: водород, сероводород, метан и другие, которые, по-видимому, в определенных условиях могут также участвовать в процессах преобразования минерального субстрата.

Таким образом, биохимический аппарат, которым располагает микрофлора почвы для деструкции минералов, в высшей степени гибок и разнообразен. В зависимости от условий среды может быть использовано то или иное из имеющихся средств для освобождения химических элементов из породы.

В результате длительного действия почвенных агентов выветривания и мобилизации вещества земной коры достигается одно из главнейших условий динамического развития и функционирования зоны гипергенеза - образование фонда лабильных соединений и элементов, создающего необходимые предпосылки для различного типа миграции веществ и круговоротов.

Благодаря разрушению литосферных пород возникает оболочка, способствующая поглощению паров, газов, адсорбции элементов и соединений из растворов.

Почва - источник вещества для формирования пород и полезных ископаемых.

Почва является источником для формирования в ней минералов, пород и полезных ископаемых. Осадочная и метафорфическая оболочки образовались при участии вещества, испытавшего воздействие почвообразовательного процесса.

Почвообразование оказывает существенное влияние на торфонакопление и генетически связанное с ним углеобразование. Взаимосвязь торфо - и угленакопления обусловлена прежде всего тем, что и торф и многие виды ископаемых углей -- результат консервации растительных остатков, образовавшихся при совместном влиянии климата, растительности, геологической обстановки и, конечно, почвообразования. Почвенный фактор во многих работах, однако, не упоминается, что также указывает на явный недоучет многообразия роли почв в природных процессах.

Есть основания говорить также и об определенном значении почвенной оболочки Земли для формирования нефти и газа, находящихся в "родственных" связях с углем. В химическом составе угля, нефти и природного газа много общего. Прежде всего, преобладает углерод и присутствуют водород, кислород, азот, т. е. те элементы, которые являются основой жизни на Земле.

Рассмотренные вопросы вклада почвообразования в формирование горючих полезных ископаемых свидетельствуют о существенном значении еще одного результата взаимодействия почвы с литосферой Земли. Становится ясным, что область влияния почвенной оболочки не исчерпывается той маломощной пленкой земной коры, в которой она расположена в настоящее время. Если рассматривать геологические масштабы времени в размере эпох и периодов, то перед нами со всей убедительностью предстает грандиозное распространение влияния почвенной оболочки на значительную, а возможно и большую, часть литосферы.

В коре выветривания, тесно связанной с почвообразованием, представлены месторождения полезных ископаемых, которые могут образоваться различными путями. В одних случаях происходит высвобождение в результате разрушения породы самородных металлов и устойчивых минералов (золото, платина, серебро, титанистый жезезняк, касситерит, гранат, алмаз и др.). В других случаях накапливаются вторичные образования (каолины, бентониты, охры и др.) в результате процессов окисления, гидролиза, синтеза и других геохимических реакций. Кроме того, полезные ископаемые могут образовываться при выпадении соединений из насыщенных растворов, путем метасоматоза, карстовых явлений и т. п.

Почвообразовательные процессы задействованы в том или ином виде в разной степени в создании всех групп осадочных пород: обломочных, глинистых, аллитных, железистых, марганцевых, фосфатных, карбонатных, кремнистых, солей, каустобиолитов. Это проникновение почвообразования в осадочный литогенез обусловлено, прежде всего, теснейшей прямой или опосредованной связью почвы с живым веществом Земли.

Оценивая общий вклад почвы в континентальный литогенез, необходимо отметить очевидное влияние тесно взаимосвязанных процессов почво - и корообразования не только на формирование мощных толщ осадочных пород, которые прорабатываются почвообразованием по мере их накопления, но и не менее сильное воздействие данных процессов на плотные породы. Эти породы претерпевают интенсивное воздействие почво - и корообразования, одним из важнейших результатов которого оказываются диспергация и растворение вещества, законсервированного в кристаллических решетках, с последующим поступлением значительной части мобилизованного консервативного материала в геохимические потоки в системе континент - океан.

Аккумуляция энергии Солнца.

Участие почв в данном процессе изучено недостаточно, хотя реальность этого участия в настоящее время не вызывает сомнения. Особого внимания заслуживает обмен энергией и веществами между разными слоями литосферы. В. И. Вернадский считал, что гранитная оболочка - метаморфизованная и переплавленная, когда-то была на поверхности биосферой суши.

Атомные структуры основных минералов зоны гипергенеза по сравнению с главными минералами изверженных пород характеризуются повышенными запасами энергии, поскольку они образуются в процессе выветривания (и почвообразования) при эндотермических реакциях с поглощением солнечной энергии. Это важно, поскольку данные минералы составляют основную массу осадочных пород, которые в областях опускания земной коры попадают в глубокие горизонты планеты. Для этих горизонтов характерны высокие температуры и давление, поэтому вещество, образовавшееся при почвообразовании и выветривании, перестраивается в атомные системы с меньшей энергоемкостью. Выделяемое при этом тепло стимулирует внутриземные процессы.

Почва также участвует в передаче вещества атмосферы в недра Земли. В процессе почвообразования происходит поглощение газов, которые в составе почвенных соединений поступают в осадочные породы. Вместе с органическим веществом осадочные породы уносят с собой добавочные количества кислорода за счет окислов.

Важна роль почв в фиксации атмосферного азота в его глобальном круговороте, отмечая, что поступление азота в состав органических соединений происходит преимущественно в почве. Особенно важное значение имеет связывание почвенно-растительным покровом диоксида углерода с последующим погребением в осадочной оболочке.

Аккумуляция углерода в стратосфере достигает колоссальных величин. Только органического углерода в фанерозойских отложениях накоплено более 9 * 1021 г; карбонатного углерода содержится в несколько раз больше. Аккумуляция СО2 атмосферы при формировании органического осадочного вещества Земли и карбонатных осадочных пород имеет принципиальное значение для поддержания геологической активности планеты и постоянного выделения из недр диоксида углерода и других газов в воздушную оболочку.

Гидросферные функции

В настоящее время отсутствует единая общепринятая трактовка понятия гидросферы. Связано это в значительной мере с разнообразием форм нахождения воды в природе и вычленением в водной оболочке Земли существенно разных составляющих: океана, жидких наземных континентальных вод и льда, атмосферных и подземных вод и др.

Хотя различные типы вод находятся между собой в генетическом родстве, реальная функциональная связь между ними в каждый момент времени не может рассматриваться как однопорядковая.

То, что мегагидросфера, или планетарная водная оболочка, проникает своей верхней границей в атмосферу, не противоречит классическим представлениям о соотношении геосфер Земли рассматривались как взаимопроникающие друг в друга.

Роль в круговороте воды.

Перед атмосферными осадками, питающими реки, все другие факторы, за исключением температуры, представляются более чем второстепенными. Однако постепенно стало выясняться существенное значение и других гидрологических факторов: почвы, литологии, рельефа, живого вещества, антропогенных влияний.

Огромно значение в истории воды почвенных растворов, являющихся основным субстратом жизни. Рассматривая связи различных форм природной воды, изучение почвенных растворов вскрывает в истории воды грандиозное явление, связывающее разные воды (морские, речные и дождевые). Ниже дана схема зависимости почвенных и других вод.

Почва играет роль посредника между климатом, речным и подземным стоками. Ни одно явление водного баланса не минует почву. Поэтому необходимо самое пристальное внимание уделять гидрологической роли почвы, без чего не могут быть правильно поняты многие гидрологические явления и процессы.

Говоря о важности учета почвенных гидрологических функций в современных исследованиях, следует, прежде всего, иметь в виду разнообразие свойств реальных почв и сильное антропогенное изменение многих из них, приводящее к значительной изменчивости гидрологических процессов, контролируемых почвой. Особую актуальность приобретают детализация многих гидрологических исследований с учетом данных по динамике почв и дальнейшее развитие гидрологии почв в целом.

Защита литосферы от чрезмерной эрозии и условие ее нормального развития.

Участие почвы в формировании речного стока и водного баланса имеет многоплановое проявление и определяется рядом факторов, среди которых первостепенное значение имеют водно-физические свойства почвы.

Так, есть случаи, когда инфильтрационная и водоудерживающая способности почв изменяются параллельно (одновременно возрастают или уменьшаются). При малых значениях фильтрационных и водоудерживающих показателей основная масса осадков расходуется на поверхностный сток; питание подземных вод очень слабое, а испарение с поверхности почв отсутствует или незначительно (практически нечему испаряться). Полный речной сток почти равен величине атмосферных осадков, но он состоит главным образом из поверхностных (паводочных) вод. В период между паводками реки сильно пересыхают, поскольку питание за счет подземных вод оказывается незначительным. При больших значениях фильтрационных и водоудерживающих показателей почв величины и соотношения элементов водного баланса сильно изменяются. Поверхностный сток уменьшается, испарение увеличивается за счет образовавшихся ресурсов почвенной влаги, питание рек подземными водами возрастает.

Более широко в природе распространено иное соотношение основных водно-физических свойств почв: при увеличении инфильтрационных показателей почв происходит уменьшение их водоудерживающей способности. В этом случае поверхностный сток резко уменьшается, а подземный, напротив, сильно возрастает. Испарение достигает максимума при средних (оптимальных) значениях водно-физических свойств почв и мало при их крайних значениях. Полный речной сток изменяется наоборот: он снижается до минимума при средних значениях водно-физических свойств почв и возрастает при крайних значениях. Указанные изменения водного баланса рассмотрены для вариантов с одинаковыми атмосферными осадками.

При выявлении основных форм участия почвы в формировании общего речного стока выясняется, что главная форма этого участия - влияние почвы на соотношение грунтового и поверхностного питания рек. Именно от почвы зависит, какая часть атмосферных осадков поступит с водоразделов в реки в виде поверхностного стока, а какая - в виде грунтового, что в значительной мере определяет равномерность питания рек.

Если почвы отличаются хорошей водопроницаемостью и в подстилающей толще имеются рыхлые и трещиноватые породы, являющиеся аккумуляторами влаги, создаются благоприятные условия для равномерного питания рек. При слабовыраженной впитывающей способности почв активизируется поверхностный сток, что может приводить ко многим нежелательным последствиям: длительным паводкам в поймах весной и пересыханию рек в засушливый период, недостаточной влагозарядке почв, активизации эрозии и др.

На характер стока заметно влияет режим промерзания почв. Сухая промерзшая почва по водопроницаемости мало чем отличается от непромерзшей. В сильно увлажненной промерзшей почве фильтрация снижается из-за закупорки пор кристаллами льда.

Водорегулирующая способность почв также существенно зависит от характера произрастающей на ней растительности. Так, структура стока в лесу и на поле очень сильно различается. В лесу он значительно меньше. Это связано, прежде всего, с тем, что инфильтрация влаги в лесных почвах благодаря их благоприятным физическим свойствам в 2-3 раза выше, чем на полях. Поэтому снеговые и дождевые воды хорошо усваиваются почвой в лесу.

Почва в значительной мере определяет и баланс подземных вод. По условиям образования различаются следующие основные типы подземных вод: инфильтрационные, седиментационные (образующиеся в процессе отложения морских осадков), возрожденные и магматические. От почвы зависит образование не только инфильтрационных, но и других вод.

Рассматривая влияние почв на формирование грунтовых вод, необходимо обратить внимание на изменение химического состава атмосферных осадков при прохождении их через почвенный профиль. Почвенный покров, тесно соприкасающийся с водой, играет значительную роль в трансформации состава выпадающих атмосферных осадков. Воздействие почвы на химический состав природной воды имеет двоякий характер: во-первых, формирующий первичный состав фильтрующихся через нее атмосферных осадков; во-вторых, метаморфизирующий, при котором происходит качественное изменение ионного и газового состава воды, взаимодействующей в дальнейшем с почвой. При этом в обоих случаях химический состав воды полностью зависит от характера почвы. Если вода фильтруется через бедные солями торфянисто-тундровые почвы, то она обогащается большим количеством органических веществ и лишь в очень малом -- солями. Близкая к этому картина у подзолистых и супесчаных почв. Значительно больше обогащают солями воду черноземные и каштановые почвы, не говоря уже о солонцеватых.

Изменение газового состава атмосферных осадков при прохождении их через почву связано прежде всего с тем, что в ней идут процессы окисления органических веществ, вызывающих расход кислорода и выделение углекислого газа, содержание которого в почвенном воздухе может достигать нескольких процентов.

Почва - фактор биопродуктивности водоемов.

Эта функция является логическим следствием воздействия почвенного покрова на химический состав поверхностных и грунтовых вод, питающих реки, а через них и на другие акватории, в том числе моря и океаны.

В результате привноса почвенных соединений водоемы получают большие количества биофильных макро - и микроэлементов, а также гумуса.

Соединения, поступившие с континентов в конечные водоемы стока, активно вовлекаются в продукционный процесс водных экосистем и в биохимические циклы. По подсчетам до 95% кальция, 50% магния и 30% калия, мобилизованных в почвах и корах выветривания при разрушении первичных пород на водоразделах, извлекаются из растворов при их попадании в моря и океаны, причем это извлечение происходит главным образом при участии организмов. Активно извлекаются, кроме того, кремний, фосфор и другие элементы.

Говоря о важном значении соединений, поступающих с водоразделов, в формировании биологической продукции водоемов, необходимо отметить следующее. В условиях слабо измененных человеческой деятельностью регионов большая часть веществ, растворенных в водах, в основном прошла через почво - и корообразование до того, как влилась в геохимическую миграцию в направлении к океану или внутриматериковым впадинам, т. е. эти вещества поступили в водоемы из природных геохимических потоков и формы этих соединений сформировались в результате естественных процессов.

Современные почвы регионов интенсивного антропогенного воздействия стали во многих случаях иначе или даже принципиально по-другому влиять на продукционный процесс в водоемах. Если в доиндустриальный период почвы выступали в основном как фактор положительного воздействия на продукционный процесс в аквасистемах, то в техногенный этап развития общества ситуация изменилась. Соединения, поступающие в водоемы из почв, в первую очередь освоенных, стали весьма часто негативно воздействовать на биологическую продуктивность гидросферы.

Почва как защитный барьер акваторий.

Основное проявление защитной функции почв заключается в том, что почва благодаря своей огромной активной поверхности в состоянии поглощать многие вредные соединения на пути их миграции в водные экосистемы, а также снижать избыточное поступление биофильных элементов. Эта роль почв оказывается исключительно важной, поскольку, например, радиоактивные изотопы из водной среды поглощаются организмами гораздо активнее, чем из почвы, что может привести к быстрому нарушению в них обмена веществ. Коэффициенты накопления большинства изучавшихся радиоизотопов у пресноводных растений достигают десятка тысяч, тогда как у наземных растений они обычно меньше единицы.

Такое резкое снижение поступления элементов в растения из почвы -- наглядный пример того, что она представляет собой сильный природный сорбент, благодаря чему оказывается мощным барьером для многих элементов и соединений на пути их миграции в водоемы стока. Сорбционная сила почв настолько велика, что химические элементы могут поглощаться из недонасыщенных растворов, из которых самостоятельные минералы многих элементов образоваться не могут. Поэтому для ряда редких элементов (рубидия, цезия и др.) сорбция фактически единственный механизм концентрации.

Возможности сорбционной функции почв, к сожалению, не беспредельны. В настоящее время в связи с резко возросшими антропогенными нагрузками она уже во многих случаях не справляется со своими задачами. В результате в речные воды и водоемы поступают избыточные количества многих соединений.

Почва выполняет также важную роль сорбционного защитного экрана от загрязнения подземных вод. Известны случаи, когда при фильтрации сточных вод и детергентов (очистителей) до 95 % загрязнителей задерживалось в верхнем 15-30-сантиметровом слое почвы, отличающейся значительной величиной удельной поверхности.

Похожие статьи




Экологические функции почв - Роль почвы в формировании и трансформации состава атмосферы Земли

Предыдущая | Следующая