Физико-механические свойства углепластиков - Свойства и применение углепластиков

Уровень свойств углепластиков зависит от характеристик применяемых углеродных волокон, вида и текстурной формы армирующего наполнителя, упругопрочностных свойств полимерной матрицы, качества раздела "волокно-матрица", от технологии переработки и структуры армирования материала. Накоплен значительный объем информации о физико-механических свойствах эпоксидных углепластиков, их поведении при различных видах нагружения (статика, повторная статика, динамика) и деформировании (растяжение, сжатие, сдвиг, срез, смятие), а также о ресурсе и сроке их эксплуатации в различных изделиях. В таблице представлены данные о свойствах однонаправленных углепластиков.

Углепластики обладают достаточно высокой длительной прочностью и низкой ползучестью благодаря высокой жесткости и низкой деформагивности углеродных волокон. Коэффициент длительного сопротивления Rt углепластиков в диапазоне рабочих температур t = 80...200 °С и при длительности нагружения r = 500... 1000 ч при растяжении и сжатии составляет 0,5...0,9 % от величины кратковременной прочности материала. Ползучесть углепластиков при длительном нагружении нагрузкой, составляющей (0,4 -- 0,5) GВ, как правило, не превышает 0,1...0,5 %. Указанные характеристики благоприятно влияют на работоспособность материала при длительном нагружении с высоким уровнем действующих напряжений.

Углепластики обладают наибольшей среди известных КМ усталостной прочностью. Коэффициент усталостного сопротивления в зависимости от вида и степени асимметрии цикла равен (0.5...0,7) GВ, т. е. в 2-3 раза выше, чем у стеклопластиков, что связано также с высокими значениями модуля упругости углеродных волокон и как следствие более низким уровнем напряжений и меньшей повреждаемостью полимерной матрицы.

Выносливость углепластика может быть оценена через свойства и состав его компонентов следующим образом:

GR= GМ*GB* (EВ/EМ)*K.

Из уравнения следует, что усталостная прочность композита прямо пропорциональна прочности матрицы GМ и модуля упругости армирующих волокон ЕВ и обратно пропорциональна модулю упругости матрицы ЕМ. Коэффициент К характеризует степень использования прочности матрицы при циклическом нагружении и учитывает наряду с природой матрицы влияние технологии изготовления композита и уровень внутренних остаточных напряжений.

По сравнению с другими ПКМ углепластики обладают меньшей удельной ударной вязкостью, трещиностойкостью и остаточ - ностью к концентрации напряжений. Значительное влияние на чувствительность углепластиков к концентрации напряжений оказывает структура армирования и направление приложения нагрузки по отношению к ориентации волокон. углепластик эпоксидный смола

Так, при растяжении под углом ±45° к направлению армирования прочность углепластика очень мало зависит от размера концентратора. Мелкие дефекты, например, отверстия диаметром, не превышающим 4 мм, тоже почти не влияют на прочность углепластика квазиизотропной структуры как при кратковременном, так и при длительном статическом и усталостном нагружении.

Повышение остаточной прочности и вязкости разрушения углепластиков возможно путем создания гибридного (поливолокнистого) материала в виде чередования сплошных слоев углеродных и стеклянных, углеродных и органических наполнителей либо в виде периодически расположенных высокомодульных (борных) или низкомодульных (стеклянных с армированием ±45°) стопоров трещин. Применение высокомодульных стопоров приводит к перераспределению большей части нагрузки на стопоры в вершине трещины, а эффективность низкомодульных стопоров заключается в создании зоны низких напряжений с повышенной вязкостью разрушения, которая препятствует распространению трещины.

Ударную вязкость материала, пренебрегая прочностью матрицы, определяют параметром ((Ga)2/2Е)*VВ (где Ga -- реализованная прочность волокна в композите), поэтому для повышения ударной вязкости углепластиков целесообразно вводить в них высокопрочные, но низкомодульные волокна, какими являются стеклянные или органические волокна.

Демпфирующая способность углепластика определяется в основном рассеиванием энергии в матрице, сопровождающимся переходом существенно зависит от уровня нагружения, структуры армирования материала и рабочей температуры. Если однонаправленные углепластики имеют уровень демпфирующей способности вдоль волокон механической энергии в тепловую, химическую и электрическую, и 0,5... 1,0 %, то в диагонально-армированном углепластике она возрастает в 5-7 раз.

Рост механических потерь с увеличением температуры объясняется снижением модуля сдвига углепластика, что связано со значительными физическими изменениями, происходящими в полимерных связующих при повышении температуры. С уменьшением модуля сдвига наблюдается монотонное повышение коэффициента механических потерь.

Теплофизические характеристики углепластиков зависят от типа волокон, типа и объемного содержания матрицы, содержания пор в матрице, температуры испытаний. Для различных углепластиков они существенно не различаются и находятся в следующих диапазонах:

    - для коэффициентов теплопроводности 0,5... 1,0 Вт/м*С; - для коэффициентов термического расширения (-1,5.. .0,5)*10-6/°С; - для коэффициента теплоемкости 0,8... 1,5 ккал/кг * °С.

Имеющиеся сведения о поведении углепластиков под влиянием различных факторов внешней среды и в условиях, близких к эксплуатационным, могут быть использованы для прогнозирования их ресурсных характеристик.

Среди разнообразных видов воздействия наиболее опасным и отрицательно влияющим на структуру и свойства для всех ПКМ является климатическое термовлажностное циклирование, чередующееся или сочетающееся с рабочими тепловыми или механическими нагрузками. Свойства углепластиков в сухом состоянии при комнатной и повышенной температурах и после длительного термостарения изменяются незначительно. При совместном действии влаги и температуры наблюдаются структурные превращения в матрице и на границах раздела "волокно-матрица", вызывающие ухудшение характеристик. Механизм изменения свойств, обусловленный сорбцией влаги, связан с двумя основными процессами: потерями температурной прочности и жесткости вследствие пластификации матрицы в объеме и в приграничном слое и потерями из-за микро - и макрорастрескивания матрицы. В зависимости от типа материала их предельное влагопоглощение различается в 1,5--2 раза и составляет для наиболее влагостойких материалов 1 %.

Уровень безопасного содержания влаги в углепластиках составляет 0,6...0,7 %; дальнейшее увеличение содержания влаги может привести к снижению упругопрочностных характеристик углепластиков при максимальной рабочей температуре на 15.. .20 %.

Технологические приемы переработки углепластиков аналогичны технологии переработки СП. В зависимости от формы и геометрических размеров детали применяются соответствующие методы формования: прессование, автоклавное формование, намотка, пултрузия, вакуумное или пресскамерное формование, пропитка под давлением. Главное в технологическом процессе -- обеспечить выполнение требований к основным технологическим параметрам проведения режима формования (температура формования и скорость подъема температуры, величина и время приложения давления формования, время выдержки на отдельных режимах формования, скорость и температура охлаждения) [1].

Похожие статьи




Физико-механические свойства углепластиков - Свойства и применение углепластиков

Предыдущая | Следующая