Продукция и деструкции органического вещества микроорганизмами - Деструкция органического вещества в водных экосистемах

В соленых озерах непрерывно протекают процессы образования и разложения ОВ при участии различных физиологических групп бактерий. В таких водоемах высокие значения минерализации ограничивают развитие высших форм жизни (Заварзин и др., 2000). Первичными продуцентами в них являются цианобактерии, фототрофные и хемолитотрофные бактерии (Герасименко и др., 1993). В синтезе автохтонного ОВ в высокоминерализованных озерах Африканского рифта, в солоноватых щелочных озерах Тувы и Бурятии участвуют цианобактерии рода Synechocyctis, Рhormidium, Оscillatoria, Spirulina, Aphanothece, Rhabdonema и др (Дубинин, 1995; Герасименко, 1996; Заварзин и др., 1999).

При благоприятных экологических условиях бентосные сообщества микроорганизмов образуют слоистые образования - микробные маты. Высокая плотность мата (1,383 ±0.007 г/см 3) исключает его всплытие со дна. Плотная кожистая пленка галофильного мата ограничивает взмучивание, и вода остается прозрачной при самых сильных волнениях (Герасименко, Заварзин, 1993). В циано-бактериальном мате солоноватого озера Хилганта, толщиной 10 мм, различают 4 слоя, разделенных минеральными прослойками. В верхнем слое выявлены цианобактерий рода Phormidium molle и Мicrocoleus, Aphanothece salina и Веggiatoa, в 3-ем слое - доминировали Chromatium, Rhodopseudomonas, в 4 слое - бактерии встречались редко, но сохранившиеся клетки цианобактерий имели нормальную ультраструктуру (Заварзин и др., 1999). Минеральные прослойки в основном были представлены СаСОз, СаSO4, гидротроилитом.

В цианобактериальных матах лагун Арабатской косы (озеро Сивгш) с соленостью от 16 до 20%, доминирует Мicrocoleus chtonoplaster, а при повышении солености - Aphanocapsa salina и зеленая микроводоросль (Бонч-Осмоловская и др., 1988).

Развитие пурпурных бактерий является одной из характерных черт микробного сообщества соленых озер. Они образуют анаэробный окислительный фильтр, работающий на свету в отсутствии O2. Массовое развитие их делает наиболее значительными во вторичной продукции ОВ, сопряженного с регенерацией сульфата путем окисления H2S, который образуют сульфатредукторы (Заварзин, 2000). Типичными представителями пурпурных бактерий алкалофильных и галофильных сообществ являются бактерии рода Ectothiorhodospira, откладывающих капли серы вне клетки в процессе окисления Н 2S до сульфатов. Кроме Н 2S они могут окислять также Н 2 и ацетат.

Одним из постоянных показателей биологической продуктивности водоемов является концентрация фотосинтетических пигментов в планктоне.

Так, по концентрации хлорофилла "а" можно судить об общей биомассе и о продукции фитопланктона, которая обычно коррелирует с первичной продукцией (Герасименко, Заварзин, 1993). В соответствии с концентрацией хлорофилла "а" различают следующие группы озер (Бульон, 1983). редукция минерализация биологический

Помимо автохтонного ОВ в водоемы поступает аллохтонное ОВ с прибрежных участков в виде растительного опада. Аллохтонное и автохтонное ОВ в дальнейшем подвергается разнообразным превращениям, общим итогом которого является постепенное разрушение ОВ - его деструкция.

Процесс деструкции ОВ является важнейшим процессом, определяющим существование биологического круговорота элементов в природ и обеспечивающим устойчивость биоценозов.

Микробное сообщество водоемов получает ОВ в виде растворенных веществ и взвешенных частиц, которые составляют основную массу остатков. В аэробной зоне, прежде всего, используются легкодоступные ОВ: мономеры углеводов, аминокислот, пептиды. Основными конечными продуктами процесса являются углекислота, вода и бактериальная биомасса.

Большую часть ОВ микробные сообщества водоемов получают в виде твердофазной мортмассы фотоавтотрофов, находящихся в виде биополимеров (белки, липиды, полисахариды, нуклеиновые кислоты и др. соединения). Эти крупные, имеющие сложное строение молекулы не могут быть утилизированы микроорганизмами, поскольку они не способны проникать через клеточную мембрану. Поэтому первой фазой разложения ОВ является деструкция биополимеров до более простых фрагментов.

Процесс деструкции осуществляют специализированные группы микроорганизмов, получивших название гидролитических. Стратегией гидролитиков является заселение поверхности субстрата и перевод веществ твердой фазы в раствор, гидролизуя их вне клетки под действием соответствующих экзоферментов - гидролаз: протеаз, липаз, целлюлаз. В поверхностном слое ила биополимеры минерализуются разными видами микроорганизмов Caulobacter, Spirillum, Flexibacter и т. д. (Кузнецов и др., 1985). В результате процесса "твердофазной ферментации" вместо индивидуальных полимеров появляются унифицированные мономеры (аминокислоты, жирные кислоты, углеводы и др.), поступающие в общий резервуар растворенных веществ. Полученные таким образом мономеры усваиваются как самими гидролитиками, так и другими группами микроорганизмов (Пристл, 1987).

Концентрация образующихся олиго - и мономеров в большинстве случаев контролируется синтезом экзоферментов бактерий. При низких концентрациях они являются индукторами синтеза соответствующих экзоферментов, а при высоких - репрессорами. Поэтому, более эффективное разложение полимеров осуществляется микробными консорциями, которые состоят из гидролитических и диссипотрофных микроорганизмов. Диссипотрофы обладают сходной с гидролитиками физиологией и метаболизмом, но не способны к гидролизу полимеров. В микробном сообществе диссипотрофы используют образовавшиеся мономеры и снижают их концентрацию ниже порогового уровня, останавливающего синтез гидролаз (Заварзин, 2000).

Выделенные протеолитические организмы из высокоминерализованных щелочных озер Восточно-Африканского рифта группировались вместе с грамотрицательными родами Deleya - Наlоmonas - Paracoccus на уровне самостоятельных видов в гамма ветви Proteobacteria. Липолитические организмы относились к псевдомонадам и были близки на уровне самостоятельных видов к Pseudomonas, а штамм из озера Натрон принадлежал к роду Stenotrophomonas. Небольшая группа штаммов была отнесена к группе энтеробактерий Vibrio/Alteromonas. Грамположительные организмы, в том числе липолитические, относились к роду Васillus (Заварзин и др., 1999).

Для соляных чеков содового комбината озера Магади выделены галоалкалофильные археи Natronobacterium и Natronococcus, занимающих определенную трофическую позицию, пользуясь концентрированием ОВ при испарении рассола с его погибающим микробным населением (Заварзин и др., 1999). Они являются обитателями содовых водоемов и содовых солончаков. Мелководные бессточные водоемы испытывают огромное влияние изменения климатических условий, и большинство из них являются пересыхающими водоемами. В таких озерах встречаются споровые организмы т. к. они имеют переживающие стадии, выдерживающие высушивание в сильноминерализованном почвенном растворе. Это, прежде всего, спорообразующие бациллы - В. lentus - В. firmus, среди алкалофильных - грамотрицательный вид В. horti.

Также в разложении ОВ в аэробной зоне участвуют алкалофильные стрептомицеты, коринебактерии, микрококки, псевдомонады. Выделенные органотрофные копиотрофы используют все природные субстраты, среди них пептон, глюкоза, дрожжевой экстракт, казеин, оливковое масло, целлюпоза, крахмал (Заварзин и др., 1999).

В мелководных соленых озерах аэробы полностью поглощают кислород в 2-3 мм от поверхности осадка, обеспечивая анаэробные условия (Заварзин, 2000). Поэтому в этих водоемах анаэробная деструкция играет первостепенную роль в разложении мортмассы цианобактерий. Облигатные анаэробы условно можно разделить на 2 группы: первичные анаэробы, которые не нуждаются во внешнем стоке электронов, и вторичные анаэробы, которые могут использовать внешние акцепторы электронов.

Группа первичных анаэробов - анаэробные гидролитики и диссипотрофы осуществляют кислотогенную (водородную) фазу в процессе брожения за счет веществ, получаемых исключительно из субстрата. Поэтому большинство из них способно к выбросу молекулярного водорода, катализируемому выделяющей гидрогеназой. Особенности брожения связаны с вариациями в использовании разных внутренних акцепторов водорода, имеющих термодинамическую обусловленность.

В аэробных условиях полное окисление ОВ до СО 2 и воды может осуществляться самими гидролитиками и диссипотрофами. В анаэробных условиях полное разложение ОВ одной группой микроорганизмов термодинамически невозможно, т. к. в отсутствии такого эффективного акцептора электронов как О 2 возникает проблема регенерации НАД(Ф)Н. Окисление НАД(Ф)Н происходит только при низких концентрациях водорода в среде. У анаэробных микроорганизмов этот процесс реализуется разными способами.

У некоторых групп бактерий (молочнокислых, пропионовокислых) процесс брожения ОВ идет без образования Н 2. Центральным метаболитом биохимических процессов является пируват, трансформация которого приводит к образованию низкомолекулярных продуктов, преимущественно органических кислот. Такие бактерии обладают стабильным метаболизмом, не зависящим от концентрации Н 2 в среде. Однако, при благоприятных условиях (обилие доступных веществ) для развития первичных анаэробов может происходить накопление органических кислот, что приводит к резкому снижению рН среды, являющимся консервирующим фактором для анаэробов (Пристл, 1987).

Другой способ анаэробного окисления субстратов с удалением Н 2 из сферы реакции и регенерации НАД(Ф)Н осуществляется синтрофными бактериями. Из несбраживаемых соединений они образуют ацетат и водород. Эти микроорганизмы не способны использовать какие-либо другие акцепторы электронов кроме Н+. Соответственно, их метаболизм полностью зависит от концентрации этого продукта в среде. Синтрофы развиваются совместно только с Н 2 - использующими анаэробными бактериями, которые способны потреблять Н 2 и тем самым поддерживать его концентрацию в среде на низком уровне. Для разных групп бактерий существует свои пороговые значения, до которых они могут снижать содержание Н 2 (Заварзин, Колотилова, 2001). Среди них важны две группы бактерий: литотрофные метаногены и сульфидогены. Развитие синтрофов обусловлено выигрышем свободной энергии за счет уменьшения концентрации продукта. Синтрофные отношения наиболее часто встречаются при разложении малодоступных веществ анаэробными бактериями (Симанькова, Ножевникова, 1989).

Радиоизотопные исследования в щелочных озерах Забайкалья показали высокую активность и водородного метаногенеза, но не ацетатного (Намсараев и др., 1999), тогда как в гиперсоленых озерах доминирует метилотрофныи метаногенез (Жилина, 1992). В озерах Южного Забайкалья и северных районов Монголии на образование СН 4 бактериальным сообществом используется до 14.0 мг С/м 2 сут (Намсараев, 2003).

Мелководные соленые водоемы, несмотря на отсутствие стабильной окислительно-восстановительной обстановки вследствие ветрового перемешивания водной массы, характеризуются высокой интенсивностью процессов круговорота серы. Сульфатредукция в них является доминирующим анаэробным терминальным процессом в разрушении ОВ. Как правило, процесс протекает в иловых отложениях, и лишь на участках, находящихся в ветровой тени, там, где возникают анаэробные условия, кроме того, наблюдается и в водной толще. За счет восстановления сульфатов минерализуется от 0,3 до 35,0 мг Сорг/дм 3 ила в сутки (Кузнецов и др., 1985).

Традиционное представление о самоочищении водоемов состоит в том, что конечными продуктами полной минерализации органических соединений оказываются вода и углекислый газ. Предполагается, что под воздействием ряда факторов:

    - физических (разбавление, осаждение грубодисперсных примесей); - физико-химических (коагуляция коллоидов); - химических (гидролиз, окислительно-восстановительные реакции); - биологических процессов

Качество воды спустя некоторое время улучшается.

Многоэтапность и многофакторность процесса самоочищения водных экосистем не всегда рассматриваются с точки зрения микробиологической деструкции и трансформации. На самом деле разнообразие механизмов преобразования сложных органических молекул регулируется множеством абиотических и биотических факторов, а также их суммарным воздействием. Характер образующихся промежуточных и конечных продуктов разложения определяется главным образом типом микробиологического процесса, структурой микробного сообщества и ферментативной активностью доминантных (преобладающих по численности или биомассе) форм.

К сожалению, при оценке экологического состояния водных экосистем долгое время учитывалась лишь численность двух основных групп микроорганизмов: патогенных бактерий, вызывающих инфекционные заболевания, и сапрофитных микроорганизмов, участвующих в разложении мертвых органических остатков. В редких случаях обращали внимание на поведение органических соединений в ходе их естественного процесса микробиологического преобразования в летний и зимний периоды. Практически не анализировали возможные пути образования промежуточных токсичных соединений (вторичное загрязнение), образующихся при изменении состояния окружающей среды и усилении антропогенной нагрузки на водные экосистемы.

Поэтому наши представления о самоочищающей способности евтрофированных природных вод должны опираться на современные знания и накопленную информацию о механизмах микробиологического преобразования органических и минеральных соединений различного происхождения в токсичные продукты.

Микробиологической деструкции подвергаются различные органические соединения:

    - азотсодержащие органические соединения (белки, пептиды, аминокислоты); - полимерные субстраты растительных остатков (целлюлоза, гемицеллюлоза, пектин, крахмал, фруктаны, маннаны); - трудноминерализуемые органические соединения (полиароматические углеводороды - нафталин, фенантрен и антрацен, лигнин, нефть, гумусовые вещества); - чужеродные соединения - ксенобиотики (пестициды, детергенты и др.).

Поэтапная деструкция высокомолекулярных органических соединений осуществляется многочисленными специализированными группами микроорганизмов. Характер образующихся продуктов разложения зависит от структуры микробного сообщества, ферментативной активности его членов, а также от условий окружающей среды. Ведущими абиотическими (физико-химическими) факторами, регулирующими направление микробиологических процессов, являются температура и насыщенность среды кислородом.

Похожие статьи




Продукция и деструкции органического вещества микроорганизмами - Деструкция органического вещества в водных экосистемах

Предыдущая | Следующая