Характеристика способов горячего формования - Изготовление деталей из пластмасс

Литье под давлением применяют для изготовления деталей из термо - и реактопластов.

При литье под давлением (рис.16) материал в гранулированном или порошкообразном виде поступает в пластикационный цилиндр литьевой машины, где прогревается и перемешивается вращающимся шнеком (в шнековых машинах). В поршневых машинах пластикация осуществляется только в результате прогрева. При переработке термопластов цилиндр нагревают до 200-350 С, при переработке реактопластов до 80-120 С. Пластифицированный материал при поступательном движении шнека или плунжера нагнетается в литьевую форму, где термопласты охлаждаются до 20-120 С (в зависимости от марки), а реактопласты нагреваются до 160-200 С. В прессформе материал выдерживают под давлением для уплотнения, что значительно снижает усадку при охлаждении вне формы.

Объем изделий ограничивается объемом материала, который может быть вытеснен червяком или поршнем при наибольшем ходе.

В разновидности метода, называемом ИНТРУЗИЕЙ, возможно на той же машине изготовить изделия значительно большего (в 2-3 раза) объема. При обычном режиме литья под давлением материал пластицируется вращающимся червяком, а нагнетается в форму невращающимя червяком при поступательном его движении. При интрузии пластикационный цилиндр снабжается соплом с широким каналом, позволяющим материалу перетекать в форму при вращении червяка до начала его поступательного двидения. Общая длительность цикла не увеличивается благодаря частичному совмещению отдельных переходов. Метод отличается высокой производительностью.

Литье под давлением термопластов и реактопластов имеет некоторую специфику. При литье под давлением термопластов молекулы материала ориентируются в направлении течения, что сопровождается упрочнением материала в направлении течения. Поток расплава термопласта в форме расширяется и перпендикулярно направлению течения в нем возникают ориентационные напряжения - этоя является еще одной причиной возникновения остаточных напряжений - различие в скоростях и степени охлаждения материала в поверхностных и внутренних слоях.

Ориентационные напряжения в готовом изделии уменьшить не удается, уменьшение их достигается путем подбора рабочих элементов конструкции прессформы. При литье деталей из линейных полимеров следует учмтывать ориентацию молекул и место спаев потоков материала в зависимости от варианта расположения литника (рис.17), где свойства детали отличаются. При действии сжимающих эксплуатационных нагрузок следует использовать вариант по рис.17, а, при действии изгибающих нагрузок, перпендикулярных длине - по рис. 17, г. На рис.18 представлены схемы движения расплава и места спаев полимера при различных литниковых системах. В местах спая обычно получают ухудшенные механические и многие другие свойства.

Термические напряжения можно снизить либо уменьшением перепада температур между материалом и прессформой, либо при последующем нагреве готовых изделий.

В ходе процесса под действием высоких температур и механических напряжений может происходить деструкция материала. Усадка в прессформе частично компенсируется ее подпиткой расплавом, находящимся под давлением при охлаждении формы, поэтому основная усадка происходит после извлечения из формы изделия. Ориентация макромолекул при литье обусловливает и анизотропию усадки вдоль и поперек направления течения расплава.

Режимы переработки некоторых термопластов представлены в таблице 3.

Таблица 3. Режимы литья под давлением термопластичных пластмасс

Материал

Предварительная обработка

Температура, С

Давление,

МПа

Выдержка под давлением в прессформе, С

Термообработка

В камере сжатия

Пресс-формы

Полистирол блочный эмульсионный

Таблетирование и сушка при 160-180 С в течение 30-60 мин.

190-215

25-40

80-150

30-60

Медленный нагрев до 65-80 С и выдержка 1-3 ч

Полиамид 68(П54, П548)

Сушка при 70 С в течение 30-50 ч

190-265

50-130

20-175

15

-

Полипропилен

-

180-250

120-150

80-120

-

Медленное охлаждение

При литье под давлением реактопластов должны строго регулировать температуру. При превышении оптимальной температуры происходит отверждение материала до заполнения формы. При пониженной температуре реактопласт плавится долго. Качество изделий не уступает по физико-механическим характеристикам изделиям, формованным другими методами.

Реактопласты льют под давлением реже, чем термопласты. Однако этот метод прогрессивен. Благодаря интенсивному перемешиванию материала в процессе подогрева скорость и степень отверждения материала при литье под давлением выше, чем при прессовании. Наиболее эффективен метод при изготовлении толстостенных изделий.

Прессование. Этот метод применяют преимущественно для формования реактопластов. В производстве используют две разновидности прессования: 1) прямое (открытое, компрессионное) прессование и 2) литьевое (трансферное) прессование (пресслитье).

При прямом прессовании (рис.19,а) в загрузочную камеру матрицы раскрытой прессформы загружается материал. При закрытии формы материал пластифицируется за счет нагрева от рабочих частей, заполняет оформляющую полость и отверждается. После разъема формы изделие из формы выталкивается.

Прямому прессованию отдают предпочтение при изготовлении точных простых деталей, переработке высоконаполненных материалов, производстве деталей максимально чистого цвета и деталей весом более 1 кг. По поверхности разъема при прямом прессовании возникает облой (рис. 20). Прямое прессование малопроизводительный способ производства.

Прямое прессование выполняется на гидравлических прессах, управление прессов полуавтоматическое; автоматически и точно регулируется температура с точностью 2 С и время выдержки с помощью установки "МАРС-200Р".

Режимы прямого прессования для некоторых реактопластов представлены в таблице 4.

Таблица 4. Режимы прессования термореактивных пластмасс

Материал и марка

Температура прессования, С

Выдержка под давлением, мин/мм

Давление, Мпа

При прессовании

Без подогрева

С подогревом до 80-100 С

Обычном

Литьевом

1

2

3

4

5

6

К-15-2, К-17-2, К-18-2, К-20-2, К-110-2, монолит-1,7

160-170

175-185

0.8 -1

-

-

К-211-2, К-21-22, К-220-23

15-160

165

1-2.5

25-35

40-60

К-211-3

-

180-190

1.5 -2.5

Аминопласт

135-145

165

1-1.5

25-35

-

Литьевое прессование (рис. 19, б). При литьевом прессовании загрузочная камера отделена от формующей полости. Прессматериал кладут в загрузочную камеру, где пластифицируется при сжатии под действием теплп. Пластифицированный материал из загрузочной камеры перетекает в рабочую полость формы. Протекание по узкому каналу способствует однородному и полному нагреву и отверждению всей массы материала в форме. Это способствует сокращению выдержки материала в форме, уменьшению и даже полному избавлению от облоя.

Пресслитью отдают предпочтение при изготовлении толстостенных деталей, деталей с металлической арматурой, сложной конфигурацией, с тонкими стенками. Детали отличаются высокой размерной точностью.

Режимы пресслитья представлены в таблице 4.

Недостатком пресслитья является повышенный расход материала по сравнению с обычным прессованием, так как в загрузочной камере остается часть необратимого материала.

Заливка - это процесс, применяемый для изготовления изделий из компаундов или герметизации и изоляции компаундами изделий электронной и радиопромышленности.

Компаунды - это полимерные композиции на основе полимерного связующего с добавками пластификаторов, наполнителей, отвердителей и др. Компаунды представляют собой твердые или воскообразные массы, которые перед употреблением нагревают для перевода в жидкое состояние.

В зависимости от вязкости компаунда заливку осуществляют без давления или при небольшом давлении до 0,5 Мпа. В простейшем случае изготовления детали или герметизации и изоляции изделия компаунд из любой емкости заливают до краев формы или кожуха прибора.

Режимы отверждения (в зависимости от марки): температура от 20 до 180 С, время 1-18 часов.

Для более простой автоматизации процесса заливки иногда применяют засыпку таблетированного материала в форму, который при нагревании формы расплавляется и заполняет ее. Для автоматизации этого процесса в условиях крупносерийного производства применяют литье под давлением.

Намотка. Намотку применяют для изготовления изделий типа тел вращения. Исходными материалами для намотки являются нити (преимущественно стеклянные) и жидкотекучие полимерные материалы.

Способом намотки изготовляют цилиндрические оболочки, колпаки-обтекатели, трубчатые и другие изделия.

В процессах намотки используют высокопроизводительные намоточные станки и оправки, на которые наматывают нити с нанесенным на них полимерным материалом.

В практике изготовления изделий из стеклопластиков применяют два способа намотки: мокрый и сухой. При первом способе непосредственно перед намоткой на оправку производится пропитка стеклянного или другого волокна. При втором способе используют препрег - предварительно пропитанный связующий материалом стеклоармирующую нить. Второй - сухой способ, который обеспечивает более высокую производительность трудаЮ позволяет использовать широкую номенклатуру связующих и армирующих материалов, обеспечивает высокое качество изделий и поэтому его широко применяют в производстве. Первый - мокрый способ используют для изготовления изделий сложной конфигурации в единичном производстве. Связующими в процессе намотки являются полиэфирные и эпоксидные смолы.

Процесс изготовления намоткой состоит из следующих операций: 1 - подготовка технологической оснастки, включающая сборку оправки, установку ее на станок и подготовку станка, подготовку разделительного слоя, его нанесения на оправку и сушку; 2 - намотка, включающая установку кассет с препрегом на станок, послойную намотку с прикаткой; 3 - термообработка изделия (полимеризация связующего); 4 - разборка оправки; 5 - механическая обработка; 6 - контроль изделия и упаковка.

Основные способы намотки

    1. Тангенциальная намотка (рис.21,а) характерна постоянным шагом намотки в одну или послойно в одну и другую стороны; недостатки - низкая прочность в осевом направлении; преимущества - простое оборудование, высокая прочность в тангенциальном направлении; малые начальные напряжения. 2. Продольно-поперечная намотка (рис.21,б) характерна укладкой слоев армирования в продольном и поперечном направлении; надостатки - возможна намотка трубчатых деталей и конических деталей только с небольшим уклоном; преимущества - сравнительно простое оборудование, высокая производительность, оптимальная анизотропия свойств. 3. Сочетание намотки по спирали с тангенциальной (рис.21,в) характерно намоткой двойного спирального слоя с последующей намоткой тангенциального слоя; недостатки - сложное оборудование, низкая производительность, большие отходы; преимущества - возможно армирование в различных направлениях. 4. Спиральная намотка (рис.21,г) характерна намоткой только спиральных слоев с корректировкой углов укладки по зонам; недостатки - сложное програмное оборудование, низкая производительность, сложные оправки. 5. Намотка с переменным углом армирования (рис.21,д) характерна намоткой по спирали с переменным по длине оправки углом армирования и корректировкой этого угла от слоя к слою; недостатки - сложное программное оборудование, низкая производительность; преимущества - возможна намотка конусов без отходов. 6. Планарная намотка (рис.21,е) характерна планарной намоткой от полюса к полюсу; недостатки - низка тангенциальная прочность, значительная неравномерность прочности полюсов; преимущества - можно использовать упрощенное оборудование, максимальная прочность вдоль оси.

Типы применяемых оправок для намотки:

    1. Неразборные (рис.21,а) - применяют для цилиндрических деталей. 2. Разборные из металлических элементов (рис.22,б) - применяют для деталей с поднутрениями. 3. Выплавляемые из легкоплавких сплавов (рис.22,в) - применяют для сложных деталей. 4. Размаваемые (рис.22,г) - применяют для деталей замкнутой формы. 5. Разборные с разрушаемыми элементами (рис.22,д) - применяют для сложных деталей в единичном производстве.

Режимы переработки полимеров. Из ранее сказанного следует, что к параметрам режимов обработки относят температуру расплава и инструмента, давление формования, время заполнения и время выдержки под давлением, а также разность температур между соседними зонами пластикационного цилиндра.

Рациональные режимы получения изделий выбирают в зависимости от условий их эксплуатации. Направленное изменение параметров переработки позволяет получить требуемую структуру и свойства изделий. Так с увеличением указанных параметров режимов переработки возможно управлять усадкой, стабильностью размеров и формы, стойкостью к растрескиванию, теплостойкостью, морозостойкостью аморфных и кристаллизующихся полимеров.

Выбранные технологические параметры переработки уточняют по отдельным показателям качества изделий. Уточнение производят на основе зависимости между технологическими параметрами и микроструктурой изделий, определяющей качество. Для аморфных полимеров определяют ориентацию, и в случае превышения расчетной величины технологические параметры корректируют в направлении снижения ориентации. Для кристаллизующихся полимеров рассчитывают макроструктуру (размеры отдельных слоев и зон) при выбранных технологических параметрах. Формирующуюся структуру по относительной площади слоев и зон сравнивают со структурой, обеспечивающей требуемое качество. В случае отклонения параметров формирующейся макроструктуры от параметров качественных изделий технологические параметры корректируют.

При изготовлении изделий возможен брак (пузыри, утяжины, коробление, уменьшение размеров и т. п.). В этом случае также корректируют технологические параметры переработки.

Выбранные параметры затем корректируют с целью получения наибольшей производительности при обеспечении качества изделий.

Режимы переработки некоторых марок термопластов представлены в табл. 3, реактопластов - в табл. 4.

Похожие статьи




Характеристика способов горячего формования - Изготовление деталей из пластмасс

Предыдущая | Следующая