Введение. - Электроизоляционные материалы

Свойства электроизоляционных материалов.

Характеристика важная для оценки качества материалов, применяемых для защитных покровов ( шланги кабелей, опрессовка конденсаторов, компаундные заливки, лаковые покрытия деталей ) - влагопроницаемость электроизоляционных материалов, т. е способность их пропускать сквозь себя пары воды.

Благодаря наличию мельчайшей пористости большинство материалов обладает поддающейся измерению влагопроницаемостью. Только для стекол, хорошо обожженной керамики и металлов влагопроницаемость почти равна нулю.

Можно черезопределить количество влаги m ( в микро граммах ), проходящее за время участок поверхности S [см 2 ] слоя изоляционного материала толщиной h [см] под действием разности давлений водяных паров р 1 И р 2 [ мм. рт. ст. ] с двух сторон слоя, по формуле:

M=П

Это уравнение аналогично уравнению для прохождения через тело электрического тока; разность давлений (р 1 - р 2 ) аналогична разности потенциалов, m/t - величине тока, а h/ПS - сопротивлению тела; коэффициент П, аналогичный удельной объемной проводимости, есть влагопроницаемость данного материала.

Влагопроницаемость для различных материалов изменяется в широких пределах. Например: для парафина значение П равно 0,0007; для полистирола - 0,03; для триацетата целлюлозы - около 1 Мкг /(см - ч - мм рт. ст. ).

Чтобы уменьшить влагопроницаемость пористых изоляционных материалов широко применяется их пропитка. Необходимо помнить, что пропитка волокнистых целлюлозных материалов и других пористых органических диэлектриков дает лишь замедление после длительного воздействияувлажнения материала, не влияя на величину влажности. Это связано с тем, что молекулы пропиточных веществ, имеющие весьма большие размеры по сравнению с размерами молекул воды, не в состоянии создать полную непроницаемость пор материала для влаги, а в наиболее мелкие поры пропитываемого материала они вообще не могут проникнуть.

В тропических условиях, при длительном использовании электроаппаратуры, особенно, на органических диэлектриках наблюдается развитие плесени. Плесень ухудшает: удельное поверхностное сопротивление диэлектриков, приводит к росту потерь и ухудшению механической прочности изоляции, вызывает коррозию соприкасающихся с ней металлических частей.

Электроизоляционные материалы и различные электротехнические изделия испытывают на тропикостойкость, длительно выдерживая при температуре 40 - 50 0 С в воздухе, насыщенном парами воды, и при воздействии культур плесневых грибков ( точные условия этих испытаний установлены Международной электротехнической комиссией ), после чего определяется степень ухудшения электрических и других свойств исследуемых образцов и отмечается интенсивность роста плесени на них.

С целью повышения плесенеустойчивости органической электрической изоляции в ее состав вводят добавки Фунгицидов , т. е. веществ, ядовитых для плесневых грибков и задерживающих их развитие, или же покрывают изоляцию лаком, содержащим фунгициды. Имеется большое число рецептур фунгицидов, пригодных для введения в те или иные электроизоляционные материалы. К числу сильнодействующих фунгицидов принадлежат, в частности, некоторые органические соединения, содержащие азот, хлор, ртуть.

Наиболее стойкими к образованию плесени являются неорганические диэлектрики - керамика, стекла, слюда, кремнийорганические материалы и некоторые из органических, например эпоксидные смолы, фторопласт - 4, полиэтилен, полистирол. Наиболее уязвимы для развития плесени целлюлозные материалы, в том числе и пропитанные ( гетинакс, текстолит ), канифоль, масляные лаки и др.

В некоторых случаях для электроизоляционных и других материалов опасны транспортировка и хранение на складах в тропических условиях. А также приходится считаться с возможностью повреждения электрической изоляции, кабельных оболочек термитами и животными.

Похожие статьи




Введение. - Электроизоляционные материалы

Предыдущая | Следующая