Обработка на сверлильных станках, Макроскопический анализ - Обработка на сверлильных станках

Технологические возможности обработки на станках сверлильной группы

Обработкой на сверлильных станках получают цилиндрические, конические, плоские и комбинированные поверхности, нарезают резьбы (Рис.1,2).

технологические операторы при обработке на сверлильных станках

Рис. 1 Технологические операторы при обработке на сверлильных станках: а - сверление; б - рассверливание; в - зенкерование;

технологические операторы при обработке на сверлильных станках

Рис. 2 Технологические операторы при обработке на сверлильных станках: г, д - развертывание, е, ж, з - зенкование, и - резьбонпрезание.

Нетехнологичные элементы при сверлильной обработке.

Такими элементами являются отверстия, при получении которых неизбежен увод оси сверления (Рис. 3).

А)

Б)

В)

Рис. 3 Конструкции отверстий, обуславливающие увод оси сверла: расположение под углом к плоскости ввода сверла (а); глубокие (б); с неплоской поверхностью ввода сверла (в).

Методы исследования и контроля металлов и сплавов

Макроскопический анализ

Макроанализ заключается в определении строения металла путем просмотра его излома или специально подготовленной поверхности невооруженным глазом или через лупу при небольших увеличениях -- до 30 раз. Это позволяет наблюдать одновременно большую поверхность и получить представление об общем строении металла и о наличии в нем определенных дефектов.

В отличие от микроскопического исследования макроскопический анализ не определяет подробностей строения и часто является предварительным, но не окончательным видом исследования. Характеризуя многие особенности строения, макроанализ позволяет выбрать те участки, которые требуют дальнейшего микроскопического исследования. С помощью макроанализа можно определить:

    1. Нарушение сплошности металла: усадочную рыхлость, газовые пузыри и раковины, пустоты, образовавшиеся в литом металле, трещины, возникшие при горячей механической или термической обработке, флокены, дефекты сварки (в виде непровара, газовых пузырей, пустот); 2. Дендритное строение и зону транскристаллизации в литом металле; 3. Химическую неоднородность сплава (ликвацию); 4. Неоднородность строения сплава, вызванную обработкой давлением: полосчатость, а также линии скольжения (сдвигов) в наклепанном металле; 5. Неоднородность, созданную термической или химико-термической обработкой.

Поверхность, подлежащую макроанализу, изучают непосредственно (по виду излома) или шлифуют и подвергают травлению специально подготовленными реактивами. На шлифованной поверх-ности не должно быть загрязнений, следов масла и т. п., поэтому ее перед травлением протирают ватой, смоченной в спирте. Подготовленный образец называют макрошлифом.

Большое значение для успешного выполнения макроанализа имеет правильный выбор наиболее характерного для изучаемой детали сечения или излома (см. ниже).

Способы макроанализа различны в зависимоcти от состава сплава и задач, поставленных в исследовании.

1. Для выявления дефектов, нарушающих сплошность металла, флокенов, строения литой стали, волокон катаной стали применяют реактивы как глубокого, так и поверхностного травления. Состав некоторых реактивов для глубокого травления указан в таблице 1.1.

После травления макрошлиф приобретает рельефную поверхность с отчетливо видимыми осями дендритов (литая сталь), ликвационной зоной и трещинами (если они были в изломе или если в металле обнаружились флокены). Для этих целей чаще применяют поперечные макрошлифы (темплеты). Травление производят в вытяжном шкафу; макрошлифы вынимают из реактива щипцами или рукой, защищенной резиновой перчаткой.

Для Поверхностного Травления чаще всего применяют реактив Гейна, содержащий (на 1000 мл воды) 53 г хлористого аммония NH4Cl и 85 г хлористой меди CuCl2.

При погружении макрошлифа в реактив (на 30-60 с) происходит обменная реакция: железо вытесняет медь из водного раствора, и она оседает на поверхности шлифа; на участках, недостаточно защищенных медью (поры, трещины, неметаллические включения), происходит травление. Затем макрошлиф вынимают, слой осевшей меди снимают ватой под струей воды и протирают макрошлиф досуха, чтобы предохранить его от быстрого окисления на воздухе.

Таблица 1.1

Наиболее употребительные реактивы для глубокого травления

Сталь

Состав реактива, мл

Количество воды, мл

Режим травления при температуре 60-70 °С

HCl

HNO3

Двухромовокислый калий

Углеродистая, марганцовистая, хро-мистая, хромомолибденовая, хромованадиевая

50

-

-

50

15-25 мин

Остальные марки легированной -- конструкционной стали и инструментальной стали

50

-

-

50

25-35 мин

Ферритная и аустенитная стали, устойчивые против коррозии

1000

100

250

1000

30-40 мин

Макрошлиф вынимают, слой осевшей меди снимают ватой под струей воды и протирают макрошлиф досуха, чтобы предохранить его от быстрого окисления на воздухе.

Этот реактив более отчетливо выявляет характер ликвации и полосчатость деформированной стали, но менее резко выявляет структуру литого металла и трещины, особенно вызванные флокенами. Для последних целей более пригодны указанные выше реактивы глубокого травления.

2. Определение химической неоднородности. С помощью макроанализа, в отличие от химического анализа, нельзя определить количественное содержание примесей, но можно установить неоднородность распределения их в металле. Для этой цели макрошлиф следует вырезать из катанной или кованной стали в продольном направлении. Распределение серы определяют следующим образом (способ Баумана). Фотографическую (бромосеребряную) бумагу на свету смачивают или выдерживают 5-10 мин в 5 %-ном водном растворе серной кислоты и слегка просушивают между листами фильтровальной бумаги для удаления излишнего раствора. После этого на приготовленный макрошлиф укладывают фотобумагу и слегка и осторожно, не допуская смещения бумаги, проглаживают рукой или резиновым валиком для удаления оставшихся между бумагой и макрошлифом пузырьков воздуха, так как эти пузырьки оставляют на фотобумаге белые пятна и маскируют результаты анализа. Фотобумагу выдерживают на макрошлифе 2-3 мин.

Сернистые включения (MnS, FeS), имеющиеся в поверхностных участках металла, реагируют с серной кислотой, оставшейся на фотобумаге:

MnS(FeS) + H2SO4 > MnSO4(FeSO4) + H2S

Образующийся сероводород непосредственно против очагов своего выделения воздействует на кристаллики бромистого серебра фотоэмульсии:

H2S + 2AgBr > 2HBr + Ag2S.

Темные участки сернистого серебра, образующиеся на фотобумаге, указывают форму и характер распределения сульфидов.

Снятую с макрошлифа фотобумагу промывают под струей воды, фиксируют 20-30 мин в растворе гипосульфита, после чего промывают примерно 10 мин в воде и просушивают.

Если в стали и чугуне содержится повышенное количество Фосфора, то он в отдельных участках, вследствие значительной ликвации, может также участвовать в реакции с бромистым серебром, образуя фосфиды серебра темного цвета.

Определение ликвации Углерода и фосфора. Для этой цели используют указанный выше реактив: 85 г CuCl2 и 53 г NH4Cl (на 1000 мл воды).

Способ определения ликвации фосфора и углерода основан на неодинаковом травлении участков с различным содержанием этих элементов. Участки, обогащенные углеродом и фосфором, окрашиваются в более темный цвет. Лучшие результаты достигаются для стали, содержащей менее 0,6 % С. В стали с более высоким содержанием углерода осадок меди, выделяющийся при травлении, плохо смывается с поверхности шлифа.

    3. Определение неоднородности строения, соз-данной Обработкой давлением (полосчатость). Направление волокон, созданное обработкой давлением, хорошо выявляется реактивом состава: 85 г CuCl2 И 53 г NH4Cl (на 1000 мл воды), т. к. волокна металла и особенно их пограничные участки, отличающиеся по структуре и содержанию примесей, обладают неодинаковой травимостью. 4. Определение неоднородности в структуре, созданной Термической и химико-термической обработкой.

А. Определение толщины Закаленного слоя. Для этой цели закаленный образец ломают. Слой, получивший закалку, отличается по виду излома (более мелкозернистый, а при закалке без перегрева -- фарфоровидный излом). Более точно толщину закаленного слоя определяют после шлифования образца по излому (перпендикулярно оси) и травления в течение 3 мин в 50 %-ном растворе соляной кислоты при 80 °С. Закаленный слой получает более темную окраску.

Б. Определение Толщины цементованного слоя. Образец после цементации и закалки, как и в предыдущем случае, ломают. Наружный цементованный и закалившийся слой имеет более мелкое зерно и при выполнении цементации и закалки без перегрева отличается матовым фарфоровидным (шелковистым) изломом. По толщине этого слоя судят о глубине цементации.

Толщину цементованного слоя можно определять более точно шлифованием места излома (перпендикулярно оси) и травлением в течение 1-2 мин в реактиве состава: 2 г Cu Cl2 2H2O и 1 мл HCl (на 100 мл спирта). Мягкая нецементованная сердцевина покроется красноватым налетом меди вследствие вытеснения ее железом из реактива, тогда как цементованный слой останется нетронутым.

Похожие статьи




Обработка на сверлильных станках, Макроскопический анализ - Обработка на сверлильных станках

Предыдущая | Следующая