Конструкционные материалы - Металлические сплавы как основа конструкционных материалов
Конструкционные материалы, материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами К. м. являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества К. м. относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др. Длительный период в своем развитии человеческое общество использовало для своих нужд (орудия труда и охоты, утварь, украшения и др.) ограниченный круг материалов: дерево, камень, волокна растительного и животного происхождения, обожженную глину, стекло, бронзу, железо. Промышленный переворот 18 в. и дальнейшее развитие техники, особенно создание паровых машин и появление в конце 19 в. двигателей внутреннего сгорания, электрических машин и автомобилей, усложнили и дифференцировали требования к материалам их деталей, которые стали работать при сложных знакопеременных нагрузках, повышенных температурах и др. Основой К. м. стали металлические сплавы на основе железа (чугуны и стали), меди (бронзы и латуни), свинца и олова.
При конструировании самолетов, когда главным требованием, предъявляемым к К. м., стала высокая удельная прочность, широкое распространение получили древесные пластики (фанера), малолегированные стали, алюминиевые и магниевые сплавы. Дальнейшее развитие авиационной техники потребовало создания новых жаропрочных сплавов на никелевой и кобальтовой основах, сталей, титановых, алюминиевых, магниевых сплавов, пригодных для длительной работы при высоких температурах. Совершенствование техники на каждом этапе развития предъявляло новые, непрерывно усложнявшиеся требования к К. м. (температурная стойкость, износостойкость, электрическая проводимость и др.). Например, судостроению необходимы стали и сплавы с хорошей свариваемостью и высокой коррозионной стойкостью, а химическому машиностроению -- с высокой и длительной стойкостью в агрессивных средах. Развитие атомной энергетики связано с применением К. м., обладающих не только достаточной прочностью и высокой коррозионной стойкостью в различных теплоносителях, но и удовлетворяющих новому требованию -- малому поперечному сечению захвата нейтронов.
К. м. подразделяются: по природе материалов -- на металлические, неметаллические и композиционные материалы, сочетающие положительные свойства тех и др. материалов; по технологическому исполнению -- на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т. п.); по условиям работы -- на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т. д.; по критериям прочности -- на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.
Отдельные классы К. м., в свою очередь, делятся на многочисленные группы. Например, металлические сплавы различают: по системам сплавов -- алюминиевые, магниевые, титановые, медные, никелевые, молибденовые, ниобиевые, бериллиевые, вольфрамовые, на железной основе и др.; по типам упрочнения -- закаливаемые, улучшаемые, стареющие, цементируемые, цианируемые, азотируемые и др.; по структурному составу -- стали аустенитные и ферритные, латуни и т. д.
Неметаллические К. м. подразделяют по изомерному составу, технологическому исполнению (прессованные, тканые, намотанные, формованные и пр.), по типам наполнителей (армирующих элементов) и по характеру их размещения и ориентации. Некоторые К. м., например сталь и алюминиевые сплавы, используются как строительные материалы и, наоборот, в ряде случаев строительные материалы, например железобетон, применяются в конструкциях машиностроения.
Технико-экономические параметры К. м. включают: технологические параметры -- обрабатываемость металлов давлением, резанием, литейные свойства (жидкотекучесть, склонность к образованию горячих трещин при литье), свариваемость, паяемость, скорость отверждения и текучесть полимерных материалов при нормальных и повышенных температурах и др.; показатели экономической эффективности (стоимость, трудоемкость, дефицитность, коэффициент использования металла и т. п.).
К металлическим К. м. относится большинство выпускаемых промышленностью марок стали. Исключение составляют стали, не используемые в силовых элементах конструкций: инструментальные стали, для нагревательных элементов, для присадочной проволоки (при сварке) и некоторые другие с особыми физическими и технологическими свойствами. Стали составляют основной объем К. м., используемых техникой. Они отличаются широким диапазоном прочности -- от 200 до 3000 Мн/м2 (20--300 кгс/мм2), пластичность сталей достигает 80%, вязкость -- 3 МДж/м2. Конструкционные (в т. ч. нержавеющие) стали выплавляются в конверторах, мартеновских и электрических печах. Для дополнительной рафинировки применяются продувка аргоном и обработка синтетическим шлаком в ковше. Стали ответственного назначения, от которых требуется высокая надежность, изготовляются вакуумно-дуговым, вакуумно-индукционным и электрошлаковым переплавом, вакуумированием, а в особых случаях -- улучшением кристаллизации (на установках непрерывной или полунепрерывной разливки) вытягиванием из расплава.
Чугуны широко применяются в машиностроении для изготовления станин, коленчатых валов, зубчатых колес, цилиндров двигателей внутреннего сгорания, деталей, работающих при температуре до 1200 °С в окислительных средах, и др. Прочность чугунов в зависимости от легирования колеблется от 110 Мн/м2 (чугаль) до 1350 Мн/м2 (легированный магниевый чугун).
Никелевые сплавы и кобальтовые сплавы сохраняют прочность до 1000--1100 °С. Выплавляются в вакуумно-индукционных и вакуумно-дуговых, а также в плазменных и электроннолучевых печах. Применяются в авиационных и ракетных двигателях, паровых турбинах, аппаратах, работающих в агрессивных средах, и др. Прочность алюминиевых сплавов составляет: деформируемых до 750 Мн/м2, литейных до 550 Мн/м2, по удельной жесткости они значительно превосходят стали. Служат для изготовления корпусов самолетов, вертолетов, ракет, судов различного назначения и др. Магниевые сплавы отличаются высоким удельным объемом (в 4 раза выше, чем у стали), имеют прочность до 400 Мн/м2 и выше; применяются преимущественно в виде литья в конструкциях летательных аппаратов, в автомобилестроении, в текстильной и полиграфической промышленности и др. Титановые сплавы начинают успешно конкурировать в ряде отраслей техники со сталями и алюминиевыми сплавами, превосходя их по удельной прочности, коррозионной стойкости и по жесткости. Сплавы имеют прочность до 1600 Мн/м2 и более. Применяются для изготовления компрессоров авиационных двигателей, аппаратов химической и нефтеперерабатывающей промышленности, медицинских инструментов и др.
К К. м. относятся также сплавы на основе меди, цинка, молибдена, циркония, хрома, бериллия, которые нашли применение в различных отраслях техники (см. Бериллиевые сплавы, Медноникелевые сплавы, Молибденовые сплавы).
Неметаллические К. м. включают пластики, термопластичные полимерные материалы (см. Полимеры), керамику, огнеупоры, стекла, резины, древесину. Пластики на основе термореактивных, эпоксидных, фенольных, кремнийорганических термопластичных смол и фторопластов, армированные (упрочненные) стеклянными, кварцевыми, асбестовыми и др. волокнами, тканями и лентами, применяются в конструкциях самолетов, ракет, в энергетическом, транспортном машиностроении и др. Термопластичные полимерные материалы -- полистирол, полиметилметакрилат, полиамиды, фторопласты, а также реактопласты используют в деталях электро - и радиооборудования, узлах трения, работающих в различных средах, в том числе химически активных: топливах, маслах и т. п.
Стекла (силикатные, кварцевые, органические), триплексы на их основе служат для остекления судов, самолетов, ракет; из керамических материалов изготовляют детали, работающие при высоких температурах. Резины на основе различных каучуков, упрочненные кордными тканями, применяются для производства покрышек или монолитных колес самолетов и автомобилей, а также различных подвижных и неподвижных уплотнений.
Развитие техники предъявляет новые, более высокие требования к существующим К. м., стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе легкость, жесткость и прочность. Внешнее армирование металлических замкнутых объемов (шары, баллоны, цилиндры) стеклопластиком позволяет значительно снизить их массу в сравнении с металлическими конструкциями. Для многих областей техники необходимы К. м., сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.
Т. к. в составе К. м. нашли свое применение почти все элементы таблицы Менделеева, а эффективность ставших уже классическими для металлических сплавов методов упрочнения путем сочетания специально подобранного легирования, высококачественной плавки и надлежащей термической обработки снижается, перспективы повышения свойств К. м. связаны с синтезированием материалов из элементов, имеющих предельные значения свойств, например предельно прочных, предельно тугоплавких, термостабильных и т. п. Такие материалы составляют новый класс композиционных К. м. В них используются высокопрочные элементы (волокна, нити, проволока, нитевидные кристаллы, гранулы, дисперсные высокотвердые и тугоплавкие соединения, составляющие армировку или наполнитель), связуемые матрицей из пластичного и прочного материала (металлических сплавов или неметаллических, преимущественно полимерных, материалов). Композиционные К. м. по удельной прочности и удельному модулю упругости могут на 50--100% превосходить стали или алюминиевые сплавы и обеспечивают экономию массы конструкций на 20--50%.
Наряду с созданием композиционных К. м., имеющих ориентированную (ортотропную) структуру, перспективным путем повышения качества К. м. является регламентация структуры традиционных К. м. Так, путем направленной кристаллизации сталей и сплавов получают литые детали, например лопатки газовых турбин, состоящие из кристаллов, ориентированных относительно основных напряжений таким образом, что границы зерен (слабые места у жаропрочных сплавов) оказываются ненагруженными. Направленная кристаллизация позволяет увеличить в несколько раз пластичность и долговечность. Еще более прогрессивным методом создания ортотропных К. м. является получение монокристальных деталей с определенной кристаллографической ориентацией относительно действующих напряжений. Весьма эффективно используются методы ориентации в неметаллических К. м. Так, ориентация линейных макромолекул полимерных материалов (ориентация стекол из полиметилметакрилата) значительно повышает их прочность, вязкость и долговечность.
При синтезировании композиционных К. м., создании сплавов и материалов с ориентированной структурой используются достижения материаловедения.
Металлы и сплавы в химии и технике
Сплавы цветных металлов применяют для изготовления деталей, работающих в условиях агрессивной среды, подвергающихся трению, требующих большой теплопроводности, электропроводности и уменьшенной массы.
Медь - металл красноватого цвета, отличающийся высокой теплопроводностью и стойкостью против атмосферной коррозии. Прочность невысокая: ув = 180...240 МПа при высокой пластичности д>50%.
Латунь - сплав меди с цинком (10...40 %), хорошо поддается холодной прокатке, штамповке, вытягиванию ув=250...400 МПа, д=35...15%. При маркировке латуней (Л96, Л90, ..., Л62) цифры указывают на содержание меди в процентах. Кроме того, выпускают латуни многокомпонентные, т. е. с другими элементами (Мn, Sn. Pb. Al).
Бронза - сплав меди с оловом (до 10%), алюминием, марганцем, свинцом и другими элементами. Обладает хорошими литейными свойствами (вентили, краны, люстры). При маркировке бронзы Бр. ОЦСЗ-12-5 отдельные индексы обозначают: Бр - бронза, О - олово, Ц - цинк, С - свинец, цифры 3, 12, 5 - содержание в процентах олова цинка, свинца. Свойства бронзы зависят от состава: ув=150...2Ю МПа, д=4...8%, НВ60 (в среднем).
Алюминий - легкий серебристый металл, обладающий низкой прочностью при растяжении - ув =80...100 МПа, твердостью - НВ20, малой плотностью - 2700 кг/м3, стоек к атмосферной коррозии. В чистом виде в строительстве применяют редко (краски, газообразователи, фольга). Для повышения прочности в него вводят легирующие добавки (Мn, Сn, Mg, Si, Fe) и используют некоторые технологические приемы. Алюминиевые сплавы делят на литейные, применяемые для отливки изделий (силумины), и деформируемые (дюралюмины), идущие для прокатки профилей, листов и т. п.
Силумины - сплавы алюминия с кремнием (до 14%), они обладают высокими литейными качествами, малой усадкой, прочностью ув = 200 МПа, твердостью НВ50...70 при достаточно высокой пластичности д=5...10%. Механические свойства силуминов можно существенно улучшить путем модифицирования. При этом увеличивается степень дисперсности кристаллов, что повышает прочность и пластичность силуминов.
Дюралюмины-- сложные сплавы алюминия с медью (до 5,5 %), кремнием (менее 0,8 %), марганцем (до 0,8 %), магнием (до 0,8 %) и др. Их свойства улучшают термической обработкой (закалкой при температуре 500...520°С с последующим старением). Старение осуществляют на воздухе в течение 4...5 сут при нагреве на 170СС в течение 4...5 ч.
Термообработка алюминиевых сплавов основана на дисперсном твердении с выделением твердых дисперсных частиц сложного химического состава. Чем мельче частицы новообразований, тем выше эффект упрочнения сплавов. Предел прочности дюралюминов после закалки и старения составляет 400...480 МПа и может быть повышен до 550...600 МПа в результате наклепа при обработке давлением.
В последнее время алюминий и его сплавы все шире применяют в строительстве для несущих и ограждающих конструкций. Особенно эффективно применение дюралюминов для конструкций в большепролетных сооружениях, в сборно-разборных конструкциях, при сейсмическом строительстве, в конструкциях, предназначенных для работы в агрессивной среде. Начато изготовление трехслойных навесных панелей из листов алюминиевых сплавов с заполнением пенопластовыми материалами. Путем введения газообразователей можно создать высокоэффективный материал пеноалюминий со средней плотностью 100...300 кг/м3. йг
Все алюминиевые сплавы поддаются сварке, но она осуществляется более трудно, чем сварка стали, из-за образования тугоплавких оксидов Аl2О3.
Особенностями дюралюмина как конструкционного сплава являются: низкое значение модуля упругости, примерно в 3 раза меньше, чем у стали, влияние температуры (уменьшение прочности при повышении температуры более 400°С и увеличение прочности и пластичности при отрицательных температурах); повышенный примерно в 2 раза по сравнению со сталью коэффициент линейного расширения; пониженная свариваемость.
Титан за последнее время начал применяться в разных отраслях техники благодаря ценным свойствам: высокой коррозионной стойкости, меньшей плотности (4500 кг/м3) по сравнению со сталью, высоким прочностным свойствам, повышенной теплостойкости. На основе титана создаются легкие и прочные конструкции с уменьшенными габаритами, способные работать при повышенных температурах.
Похожие статьи
-
Магний - металл серебристо-белого цвета с плотностью 1,74 Мг/м3 и температурой плавления 651 С; имеет гексагональную плотноупакованную кристаллическую...
-
Свойства титана Титан - металл серого цвета. Он имеет две полиморфные модификации. Отличительными особенностями являются хорошие механические свойства,...
-
Бериллий и сплавы на его основе, Свойства бериллия, Бериллиевые сплавы - Сплавы цветных металлов
Свойства бериллия Бериллий - металл серого цвета, обладающий полиморфизмом. Помимо очень высоких удельных прочности и жесткости, бериллий имеет большую...
-
Общая характеристика металлов - Металлические сплавы как основа конструкционных материалов
Физические свойства металлов и сплавов 1) Пластичность - способность изменять форму при ударе, вытягиваться в проволоку, прокатываться в тонкие листы. В...
-
Сплавы на основе магния, Свойства магния - Сплавы цветных металлов
Свойства магния Магний - металл серебристо-белого цвета. Магний и его сплавы отличаются низкой плотностью, хорошей обрабатываемостью резанием и...
-
Практическое использование аморфных сплавов - Принцип получения аморфных материалов
Использование аморфных сплавов в качестве диффузионных барьеров устройств привело к тому, что линейные размеры токоведущих дорожек, контактных площадок и...
-
Введение - Металлические сплавы как основа конструкционных материалов
Металлы хорошо проводят тепло и электрический ток, т. е. они теплопроводны и электропроводны. Самую высокую электропроводность имеют серебро Ag, медь Си,...
-
Сплавы на основе системы алюминий - кремний Сплавы Al - Si являются наиболее распространенными литейными алюминиевыми сплавами. Это связано с хорошим...
-
Бетон - Стекло и строительные материалы на основе минеральных вяжущих веществ
Бетон (франц. b ton), искусственный каменный материал, получаемый из рационально подобранной смеси вяжущего вещества (с водой, реже без нее),...
-
Композиционные материалы - Неметаллические материалы
Композиционные или композитные материалы - материалы будущего. После того как современная физика металлов подробно разъяснила нам причины их...
-
Классификация моделей Модели классифицируются по размерам. Модель отливки "Кронштейн", относится к малым моделям. При проектировании данной отливки была...
-
Структура аморфных сплавов - Принцип получения аморфных материалов
Сразу же после получения аморфных металлических сплавов (АМС) возникли вопросы, связанные с их атомной структурой. С помощью рентгеновской, нейтронной,...
-
Создание новых методов исследования процессов растворения и пассивации металлов, в том числе с привлечением физических методов (Ожега), растровой...
-
Технологичность конструкций литых деталей - Технология конструкционных материалов
Конструкция литой детали должна обеспечивать высокий уровень механических и эксплуатационных характеристик при заданной массе, конфигурации, точности...
-
Заготовки из порошковых материалов получают прессованием (холодным, горячим), изостатическим формованием, прокаткой и другими способами. При Холодном...
-
Основные положения к выбору способа литья - Технология конструкционных материалов
При выборе способа литья для получения заготовки в первую очередь должен быть рассмотрен вопрос экономии металла. Металлоемкость можно снизить...
-
Выбор материала при проектировании конструкции кузова инновационного подвижного состава обусловлен тенденций современного вагоностроения направленного на...
-
Резервуар предназначен для работы в условиях Крайнего Севера, Западной Сибири и Дальнего Востока. Для этих районов характерны длительные периоды с...
-
Состав материалов должен обеспечивать получение в отливке заданных физико-механических и физико-химических свойств; свойства и структура должны быть...
-
Исследование радиофизических свойств ненаполненных полимерных пленок В настоящее время существует потребность в создании радиопоглощающих материалов для...
-
Свойства алюминия Алюминий - металл серебристо-белого цвета. Он не имеет полиморфных превращений. Алюминий обладает малой плотностью, хорошими...
-
Сплавы алюминия - Металлургия аллюминия
Всем известна тонкая алюминиевая фольга используется как упаковочный материал для продуктов питания (например шоколада), более толстая - для изготовления...
-
Для анализа структурообразования в литейных сплавах Al - Cu используется участок диаграммы состояния от Al до первого химического соединения (CuAl2)...
-
Интенсивное развитие радиоэлектронной техники обусловило постоянное присутствие повышенного уровня электромагнитного излучения (ЭМИ) в окружающей среде...
-
Четвертый путь снижения горячеломкости - введение в сплав малых технологических добавок. Под технологическими добавками понимают такие малые добавки,...
-
Введение - Исследование горячеломкости литейных сплавов на основе систем Al-Si, Al-Cu, Al-Si-Cu
Развитие современной науки и техники показало, что важной составляющей технологического производства являются качественные показатели получаемой...
-
Для производства чугуна, стали и цветных металлов используют руду, флюсы, топливо, огнеупорные материалы. Промышленная руда - горная порода, из которой...
-
Конструкционные материалы - Электротехника. Электротехническое материаловедение
Задача 1 . Вычертите диаграмму состояния железо-карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения при...
-
Анализ конструкции (объекта дипломного проектирования) на предмет снижения ее массы, применения новых материалов, совершенствования конструктивных...
-
Цветные сплавы, твердые сплавы, композиционные материалы
ЦВЕТНЫЕ СПЛАВЫ, ТВЕРДЫЕ СПЛАВЫ, КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ Цепь работы: ознакомление с основными марками цветных сплавов и композиционных материалов, их...
-
Исходя из области применения радиопоглощающих полимерных материалов, можно утверждать, что наряду с радиофизическими характеристиками огромное значение...
-
Особенности титановых сплавов - Титан и титановые сплавы
Одним из важных преимуществ титановых сплавов перед алюминиевыми и магниевыми сплавами является жаропрочность, которая в условиях практического...
-
Для исследования радиофизических свойств радиопоглощающих полимерных материалов в настоящей работе было рассмотрено влияния весовой концентрации...
-
1. Отработана методика получения и определены оптимальные с технологической точки зрения рецепты для разработки монолитных и пористых поливинилхлоридных...
-
Цемент - Стекло и строительные материалы на основе минеральных вяжущих веществ
Цемент -- собирательное название большой группы порошкообразных вяжущих веществ (преимущественно гидравлических), способных при смешивании с водой...
-
Биоразлагаемый материал на основе полиамида и натурального каучука
БИОРАЗЛАГАЕМЫЙ МАТЕРИАЛ НА ОСНОВЕ ПОЛИАМИДА И НАТУРАЛЬНОГО КАУЧУКА В мире существует проблема, которая остро нуждаются в применении искусственных...
-
Свойства меди Медь - металл красновато-розового цвета, медь менее тугоплавка, чем железо, но имеет большую плотность. Медь обладает хорошей...
-
Жаропрочные стали и сплавы - Чугун и сталь
Эти стали, используются при работе под нагрузкой и обладают достаточной жаростойкостью при температурах выше 500 0С. Жаропрочные стали перлитного класса...
-
Конструкционные цементуемые стали - Чугун и сталь
Карбидо - и нитридообразующие элементы (такие, как Cr, Mn, Mo и др.) способствуют повышению прокаливаемости, поверхностной твердости, износостойкости и...
-
Углеродистые конструкционные стали - Чугун и сталь
Стали обыкновенного качества выпускают в виде проката (прутки, балки, листы, уголки, трубы, швеллеры и т. п.) в нормализованном состоянии и в зависимости...
Конструкционные материалы - Металлические сплавы как основа конструкционных материалов