Р-n переход при внешнем напряжении, приложенном к нему - Исследование полупроводниковых диодов

Внешнее напряжение нарушает динамическое равновесие токов в p-n-переходе. P-n-переход переходит в неравновесное состояние. В зависимости от полярности напряжения приложенного к областям в p-n-перехода возможно два режима работы.

1) Прямое Смещение P-n Перехода. Р-n-переход считается смещенным в прямом направлении, если положительный полюс источника питания подсоединен к р-области, а отрицательный к n-области (рис.1.2)

При прямом смещении, напряжения и U направлены встречно, результирующее напряжение на p-n-переходе убывает до величины - U. Это приводит к тому, что напряженность электрического поля убывает и возобновляется процесс диффузии основных носителей заряда. Кроме того, прямое смещении уменьшает ширину p-n перехода, т. к. ?( - U)1/2. Ток диффузии, ток основных носителей заряда, становится много больше дрейфового. Через p-n-переход протекает прямой ток

При протекании прямого тока основные носители заряда р-области переходят в n-область, где становятся неосновными. Диффузионный процесс введения основных носителей заряда в область, где они становятся неосновными, называется инжекцией, а прямой ток - диффузионным током или током инжекции. Для компенсации неосновных носителей заряда накапливающихся в p и n-областях во внешней цепи возникает электронный ток от источника напряжения, т. е. принцип электронейтральности сохраняется.

При увеличении U ток резко возрастает, - температурный потенциал, и может достигать больших величин т. к. связан с основными носителями концентрация которых велика.

2) Обратное смещение, возникает когда к р-области приложен минус, а к n-области плюс, внешнего источника напряжения (рис.1.3).

Такое внешнее напряжение U включено согласно. Оно: увеличивает высоту потенциального барьера до величины + U ; напряженность электрического поля возрастает; ширина p-n перехода возрастает, т. к. ?(+ U)1/2 ; процесс диффузии полностью прекращается и через p-n переход протекает дрейфовый ток, ток неосновных носителей заряда. Такой ток p-n-перехода называют обратным, а поскольку он связан с неосновными носителями заряда, которые возникают за счет термогенерации то его называют тепловым током и обозначают - I0 , т. е.

Этот ток мал по величине т. к. связан с неосновными носителями заряда, концентрация которых мала. Таким образом, p-n перехода обладает односторонней проводимостью.

При обратном смещении концентрация неосновных носителей заряда на границе перехода несколько снижается по сравнению с равновесной. Это приводит к диффузии неосновных носителей заряда из глубины p и n-областей к границе p-n перехода. Достигнув ее неосновные носители попадают в сильное электрическое поле и переносятся через p-n переход, где становятся основными носителями заряда. Диффузия неосновных носителей заряда к границе p-n перехода и дрейф через него в область, где они становятся основными носителями заряда, называется экстракцией. Экстракция и создает обратный ток p-n перехода - это ток неосновных носителей заряда. Величина обратного тока сильно зависит: от температуры окружающей среды, материала полупроводника и площади p-n перехода.

Температурная зависимость обратного тока определяется выражением,

Где - номинальная температура, - фактическая температура, - температура удвоения теплового тока

Тепловой ток кремниевого перехода много меньше теплового тока перехода на основе германия (на 3-4 порядка). Это связано с материала.

С увеличением площади перехода возрастает его обьем, а следовательно возрастает число неосновных носителей появляющихся в результате термогенерации и тепловой ток.

Итак, главное свойство p-n-перехода - это его односторонняя проводимость. Его ВАХ приведена на рис.1.4.

Похожие статьи




Р-n переход при внешнем напряжении, приложенном к нему - Исследование полупроводниковых диодов

Предыдущая | Следующая