Введение - Эволюция звезд

Как и все тела в природе, звезды не остаются неизменными, они рождаются, эволюционируют, и, наконец "умирают". Чтобы проследить жизненный путь звезд и понять, как они стареют, необходимо знать, как они возникают. В прошлом это представлялось большой загадкой; современные астрономы уже могут с большой уверенностью подробно описать пути, ведущие к появлению ярких звезд на нашем ночном небосводе.

Не так давно астрономы считали, что на образование звезды из межзвездных газа и пыли требуются миллионы лет. Но в последние годы были получены поразительные фотографии области неба, входящей в состав Большой Туманности Ориона, где в течение нескольких лет появилось небольшое скопление звезд. На снимках 1947г. в этом месте была видна группа из трех звездоподобных объектов. К 1954г. некоторые из них стали продолговатыми, а к 1959г. эти продолговатые образования распались на отдельные звезды - впервые в истории человечества люди наблюдали, рождение звезд буквально на глазах этот беспрецедентный случай показал астрономам, что звезды могут рождаться за короткий интервал времени, и казавшиеся ранее странными рассуждения о том, что звезды обычно возникают в группах, или звездных скоплениях, оказались справедливыми.

Каков же механизм их возникновения? Почему за многие годы астрономических визуальных и фотографических наблюдений неба только сейчас впервые удалось увидеть "материализацию" звезд? Рождение звезды не может быть исключительным событием : во многих участках неба существуют условия, необходимые для появления этих тел.

В результате тщательного изучения фотографий туманных участков Млечного Пути удалось обнаружить маленькие черные пятнышки неправильной формы, или глобулы, представляющие собой массивные скопления пыли и газа. Они выглядят черными, так как не испускают собственного света и находятся между нами и яркими звездами, свет от которых они заслоняют. Эти газово-пылевые облака содержат частицы пыли, очень сильно поглощающие свет, идущий от расположенных за ними звезд. Размеры глобул огромны - до нескольких световых лет в поперечнике. Несмотря на то, что вещество в этих скоплениях очень разрежено, общий объем их настолько велик, что его вполне хватает для формирования небольших скоплений звезд, по массе близких к Солнцу. Для того чтобы представить себе, как из глобул возникают звезды, вспомним, что все звезды излучают и их излучение оказывает давление. Разработаны чувствительные инструменты, которые реагируют на давление солнечного света, проникающего сквозь толщу земной атмосферы. В черной глобуле под действием давления излучения, испускаемого окружающими звездами, происходит сжатие и уплотнение вещества. Внутри глобулы гуляет "ветер", разметающий по всем направлениям газ и пылевые частицы, так что вещество глобулы пребывает в непрерывном турбулентном движении.

Глобулу можно рассматривать как турбулентную газово-пылевую массу, на которую со всех сторон давит излучение. Под действием этого давления объем, заполняемый газом и пылью, будет сжиматься, становясь, все меньше и меньше. Такое сжатие протекает в течение некоторого времени, зависящего от окружающих глобулу источников излучения и интенсивности последнего. Гравитационные силы, возникающие из-за концентрации массы в центре глобулы, тоже стремятся сжать глобулу, заставляя вещество падать к ее центру. Падая, частицы вещества приобретают кинетическую энергию и разогревают газово-пылевое облако.

Падение вещества может длиться сотни лет. Вначале оно происходит медленно, неторопливо, поскольку гравитационные силы, притягивающие частицы к центру, еще очень слабы. Через некоторое время, когда глобула становится меньше, а поле тяготения усиливается, падение начинает происходить быстрее. Но, как мы уже знаем, глобула огромна, не менее светового года в диаметре. Это значит, что расстояние от ее внешней границы до центра может превышать 10 триллионов километров. Если частица от края глобулы начнет падать к центру со скоростью немногим менее 2км/с, то центра она достигнет только через 200 000 лет. Наблюдения показывают, что скорости движения газа и пылевых частиц на самом деле гораздо больше, а потому гравитационное сжатие происходит значительно быстрее.

Падение вещества к центру сопровождается весьма частыми столкновениями частиц и переходом их кинетической энергии в тепловую. В результате температура глобулы возрастает. Глобула становится протозвездой и начинает светиться, так как энергия движения частиц перешла в тепло, нагрела пыль и газ.

В этой стадии протозвезда едва видна, так, как основная доля ее излучения приходится на далекую инфракрасную область. Звезда еще не родилась, но зародыш ее уже появился. Астрономам пока неизвестно, сколько времени требуется протозвезде, чтобы достигнуть той стадии, когда она начинает светиться как тусклый красный шар и становится видимой. По различным оценкам, это время колеблется от тысяч до нескольких миллионов лет. Однако, помня о появлении звезд в Большой Туманности Ориона, стоит, пожалуй, считать, что наиболее близка к реальности оценка, которая дает минимальное значение времени.

Здесь мы должны сделать небольшое отступление, с тем, чтобы тщательно рассмотреть некоторые детали, связанные с рождением звезды, и оценить их воздействие на ее дальнейшую судьбу. Звезды рождаются с самыми различными массами. Кроме того, они могут обладать самым разным химическим составом. Оба эти фактора оказывают влияние на дальнейшее поведение звезды, на всю ее судьбу. Чтобы лучше в этом разобраться, выйдем из дома и взглянем на ночное небо.

С вершины горы, вдали от мешающего нам городского света, мы увидим на небе, по крайней мере, 3000 звезд. Наблюдатель с очень острым зрением при идеальных атмосферных условиях увидит в полтора раза больше звезд. Одни из них удалены от нас на тысячу, другие - всего на несколько световых лет. Попытаемся теперь разместить все эти звезды на диаграмме, на которой каждая звезда характеризуется двумя физическими величинами: температурой и светимостью. Разместив все 3000 звезд, мы обнаружим, что самые яркие из них одновременно оказываются и самыми горячими, а самые слабые - самыми холодными. При этом заметим, что подавляющее большинство звезд располагается вдоль наклонной линии, которая тянется из верхнего левого угла графика в нижний правый (если, как это традиционно принято, ось температур направить влево, а ось светимостей - вверх.) Это нормальные звезды, и их распределение называют "главной последовательностью". Полученная диаграмма называется диаграммой Герцшпрунга - Рассела, в честь двух выдающихся астрономов, впервые установивших эту замечательную зависимость. В ней важную роль играет масса звезды. Если масса звезды велика, последняя при рождении попадает на верхнюю часть главной последовательности, если масса мала, то звезда оказывается в нижней ее части.

Продолжительность жизни звезды зависит от ее массы. Звезды с массой меньшей, чем у Солнца, очень экономно тратят запасы своего ядерного "топлива" и могут светить десятки миллиардов лет. Внешние слои звезд, подобных нашему Солнцу, с массами не большими 1,2 масс Солнца, постепенно расширяются и, в конце концов, совсем покидают ядро звезды. На месте гиганта остается маленький и горячий белый карлик.

Похожие статьи




Введение - Эволюция звезд

Предыдущая | Следующая