Радиационные пояса, Полярные сияния на Юпитере, Большое рентгеновское пятно - Юпитер среди планет Солнечной системы

Юпитер обладает мощными радиационными поясами5. При сближении с Юпитером "Галилео" получил дозу радиации, в 25 раз превышающую смертельную дозу для человека. Излучение радиационного пояса Юпитера в радиодиапазоне впервые было обнаружено в 1955 году. Радиоизлучение носит синхротронный характер. Электроны в радиационных поясах обладают огромной энергией, составляющей около 20 МэВ6, при этом зондом "Кассини" было обнаружено, что плотность электронов в радиационных поясах Юпитера ниже, чем ожидалось. Поток электронов в радиационных поясах Юпитера может представлять серьезную опасность для космических аппаратов ввиду большого риска повреждения аппаратуры радиацией5. Вообще, радиоизлучение Юпитера не является строго однородным и постоянным -- как по времени, так и по частоте. Средняя частота такого излучения, по данным исследований, составляет порядка 20 МГц, а весь диапазон частот -- от 5--10 до 39,5 МГц7.

Юпитер окружен ионосферой протяженностью 3000 км.

Полярные сияния на Юпитере

Структура полярных сияний на Юпитере: показано основное кольцо, полярное излучение и пятна, возникшие как результат взаимодействия с естественными спутниками Юпитера.

Юпитер демонстрирует яркие устойчивые сияния вокруг обоих полюсов. В отличие от таких же на Земле, которые появляются в периоды повышенной солнечной активности, полярные сияния Юпитера являются постоянными, хотя их интенсивность меняется изо дня в день. Они состоят из трех главных компонентов: основная и наиболее яркая область сравнительно небольшая (менее 1000 км в ширину), расположена примерно в 16 ° от магнитных полюсов8; горячие пятна -- следы магнитных силовых линий, соединяющих ионосферы спутников с ионосферой Юпитера, и области кратковременных выбросов, расположенных внутри основного кольца. Выбросы полярных сияний были обнаружены почти во всех частях электромагнитного спектра от радиоволн до рентгеновских лучей (до 3 кэВ), однако они наиболее ярки в среднем инфракрасном диапазоне (длина волны 3- мкм и 7-1 мкм) и глубокой ультрафиолетовой области спектра (длина волны 80-180 нм).

Положение основных авроральных колец устойчиво, как и их форма. Однако их излучение сильно модулируется давлением солнечного ветра -- чем сильнее ветер, тем слабее полярные сияния. Стабильность сияний поддерживается большим притоком электронов, ускоряемых засчет разности потенциалов между ионосферой и магнитодиском9. Эти электроны порождает ток, который поддерживает синхронность вращения в магнитодиске. Энергия этих электронов 10 -- 100 кэВ; проникая глубоко внутрь атмосферы, они ионизируют и возбуждают молекулярный водород, вызывая ультрафиолетовое излучение. Кроме того, они разогревают ионосферу, чем объясняется сильное инфракрасное излучение полярных сияний и частично нагрев термосферы8.

Горячие пятна связаны с тремя Галилеевыми спутниками: Ио, Европа и Ганимед. Они возникают из-за того, что вращающаяся плазма замедляется вблизи спутников. Самые яркие пятна принадлежат Ио, поскольку этот спутник является основным поставщиком плазмы, пятна Европы и Ганимеда гораздо слабее. Яркие пятна внутри основных колец, появляющиеся время от времени, как считается, связаны с взаимодействием магнитосферы и солнечного ветра8.

Большое рентгеновское пятно

Комбинированное фото Юпитера с телескопа "Хаббл" и с рентгеновского телескопа "Чандра" -- февраль 2007 г.

Основная статья: Большое рентгеновское пятно

Орбитальным телескопом "Чандра" в декабре 2000 года на полюсах Юпитера (главным образом, на северном полюсе) обнаружен источник пульсирующего рентгеновского излучения, названный Большим рентгеновским пятном. Причины этого излучения пока представляют загадку70.

Похожие статьи




Радиационные пояса, Полярные сияния на Юпитере, Большое рентгеновское пятно - Юпитер среди планет Солнечной системы

Предыдущая | Следующая