Особенности подпространств, Гравитон - Геометрия физического пространства

Хотя каждое из подпространств физического пространства, в соответствии с аксиомой 1.2, не является особым, выделенным, но одновременно и не идентичным другим. Каждое из подпространств имеет свои особенности, которые мы и рассмотрим

Гравитон

Важнейшей особенностью гравитационного поля является то, что оно является пространствообразующим. Оно определяет размерность наблюдаемого физического пространства (-1; 1; 1; 1) и его свойства, а все другие поля действуют в пространстве гравитационного поля. Нет для гравитации пространства (поля), внешнего по отношению к нему. Нельзя оказаться внешним по отношению к гравитационному полю. Потому любое наблюдаемое гравитационное взаимодействие есть остаточное взаимодействие внутри гравитонного потока сил типа Вандерваальсовских, а, следовательно, гравитационное взаимодействие материальных тел должно быть весьма слабым, что и наблюдается. Наблюдение гравитационного взаимодействия внутри гравитационного поля-пространства скажется и на числе степеней свободы.

Другой важнейшей особенностью гравитационного поля является налагаемый им режим квантования на все другие подпространства. Любое подпространство физического пространства имеет целочисленные отношения углов вращения, как показано выше, кроме самого гравитационного поля, естественно.

Следующей отличительной особенностью является то, что локально "пустое" пространство обладает антигравитационным эффектом, экспоненциально растущим с ростом расстояния. Это можно достаточно наглядно продемонстрировать геометрически. Если кому-либо не нравится термин -- "антигравитация" -- то разговор можно вести в геометрических понятиях пространств отрицательной, положительной или нулевой кривизны. Суть не изменится (напоминаем об аксиоме 1.3).

Понятие "пустого" пространства подразумевает отсутствие в нем сколько-нибудь значимых масс, зарядов, электромагнитных и прочих полей. Поместим в него тела отсчета и пробное, не способные ощутимо исказить геометрию пространства. Для свободной системы тел проекции их мировых линий в любом евклидовом сечении физического пространства будут, в общем случае, прямыми линиями. Поэтому интерес представляют гиперболические сечения (плоскости Минковского), см. рис. 1.

мировые линии тел отсчета и пробного в

Рис. 1 Мировые линии тел отсчета и пробного в "пустом" пространстве.

Модель Пуанкаре в единичном круге

На псевдоевклидовой плоскости аналогами прямых являются линии орициклов. Поэтому проекция мировой линии пробного тела относительно линии тела отсчета на псевдоевклидовой плоскости будет совпадать с орициклом. Из рис. 1, где псевдоевклидова плоскость представлена единичным кругом Пуанкаре, следует, что первоначально покоящаяся система тел отсчета и пробного, с течением времене не будет неизменной. Пробное тело будет ускоренно удаляться от тела отсчета и ускорение будет расти с ростом расстояния. Рис. 1 есть геометрическое представление антигравитационных свойств "пустого" пространства. "Пустое" физическое пространство -- пространство отрицательной кривизны. Важнейшим следствием такого свойства гравитационного поля является то, что физическое пространство Вселенной глобально не может быть пустым следствие того, что ненулевая кривизна, независимо от того отрицательная она или положительная, не может быть глобальной. Геометрическое решение единственно -- локальная кривизна любого знака полностью компенсируется локальной кривизной противоположного знака. Глобально физическое пространство Вселенной очень близко к евклидовому, но имеет локальную "рябь" -- пространственно разнесенную, но глобально полностью взаимоскомпенсированную локальную кривизну. Физическое решение также достаточно очевидно. Любая виртуальная пара достаточно удаленных частиц будет обладать необходимой для овеществления энергией. Вследствие этого пространство Вселенной будет обладать выраженной ячеистой структурой. Чем больше пустота, тем интенсивней к ее периферии будет "дуть ветер" космических частиц, тем интенсивней на ее окраинах будет идти процесс образования материальных структур. Другим следствием будет наличие верхнего ограничения размеров материальных объектов. Любой физический объект, в том числе и область пустого пространства, принципиально не может иметь размеры, даже соизмеримые с локальным радиусом кривизны Вселенной. Третьим следствием будет глобальное приближение геометрии пространства Вселенной к евклидовой.

Похожие статьи




Особенности подпространств, Гравитон - Геометрия физического пространства

Предыдущая | Следующая