Описание стратегии удержания КА - Космический аппарат
Как было сказано в предыдущем разделе, для длительного удержания КА на гало-орбите требуется, чтобы коэффициент перед возрастающей компонентой равнялся 0. Этого можно добиться, подобрав соответствующие начальные условия к системе (1). Поскольку решения системы (1) являются неустойчивыми, подбор таких начальных условий является нетривиальной задачей.
В данной работе решение системы уравнений движения КА находились численно, поэтому подбор начальных условий, обеспечивающих минимизацию возрастающей компоненты, осуществлялся алгоритмически. Кроме того, т. к. численное моделирование не может быть осуществлено с бесконечной точностью, для расчета номинальной орбиты требуется периодически совершать математические коррекции скорости КА, компенсирующие влияние возрастающей компоненты. Расчет значений таких коррекций тоже осуществлялся алгоритмически.
Подбор начальных условий заключается в том, чтобы коэффициент перед возрастающей компонентой равнялся 0. Эта задача решается итерационно. Из уравнений (4) следует, что если коэффициент перед возрастающей компонентой больше нуля, то аппарат со временем отклоняется от ограниченной орбиты в сторону положительных значений оси X, и наоборот, если коэффициент перед возрастающей компонентой меньше нуля, то аппарат отклоняется от ограниченной орбиты в сторону отрицательных значений оси X.
Этот факт используется следующим образом. Предположим, что в начальный момент времени КА находится на плоскости XZ (Y=0) и движется перпендикулярно ей (VX=VZ=0 км/с). Положим также значение скорости вдоль оси Y равным некоторому значению VY0. Построим виртуальные плоскости X=XMin и X=XMax такие, что гало-орбита лежит между ними, и будем интегрировать уравнения движения КА до того, как КА достигнет любой из указанных плоскостей. Если аппарат достиг левой границы (X=XMin), то значение коэффициента при возрастающей компоненте отрицательно, и наоборот. Т. о. определяется функция - конечная координата X КА от начальной скорости VY0. Эта функция терпит разрыв, т. е. КА не достигает ни левой, ни правой границы, при некотором значении VY0. Задача заключается в отыскании этого значения. Данная задача решается методом деления отрезка пополам. Работа алгоритма заканчивается при достижении минимальной вычислительной погрешности, обеспечиваемой средой вычислений. Иллюстрация работы алгоритма представлена на рис. 7.
Рис. 7. Подбор начальной скорости КА.
Подбор величин корректирующих импульсов подбирается по схожему алгоритму. Отличием является учет направления исполнения импульса: если в задаче нахождения начальных условий меняется только проекция вектора скорости на ось Y, то в задаче нахождения величины корректирующего импульса требуется изменение проекций вектора скоростей на оси X и Y. Подробнее методика расчета описана в следующем разделе.
Разработанный алгоритм позволяет рассчитывать начальную скорость КА и величины корректирующих импульсов для любых ограниченных орбит в окрестности точки L2 системы Солнце-Земля. При этом он позволяет рассчитывать импульсы коррекции в любой точке орбиты в любом направлении.
Похожие статьи
-
Как было сказано в предыдущем разделе, для длительного удержания КА на гало-орбите требуется, чтобы коэффициент перед возрастающей компонентой равнялся...
-
Точками либрации в ограниченной задаче трех тел, описывающей движение тела малой массы в гравитационном поле, создаваемом двумя массивными телами,...
-
Эффективная коррекция орбиты КА в окрестности точки либрации подразумевает изменение скорости КА с целью компенсации влияния возрастающей компоненты (4)....
-
Алгоритм подбора начальной скорости и величины корректирующего импульса Описанные алгоритмы были реализованы в программе GMAT (General Mission Analysis...
-
Математическая модель Для описания движения КА по ограниченной орбите введем вращающуюся систему координат, связанную с точкой L2. Центр системы...
-
Алгоритм подбора начальной скорости и величины корректирующего импульса Описанные алгоритмы были реализованы в программе GMAT (General Mission Analysis...
-
Математическая модель Для описания движения КА по ограниченной орбите введем вращающуюся систему координат, связанную с точкой L2. Центр системы...
-
Введение - Космический аппарат
Точками либрации в ограниченной задаче трех тел, описывающей движение тела малой массы в гравитационном поле, создаваемом двумя массивными телами,...
-
Орбиты, для которых были рассчитаны направления неустойчивости в предыдущем разделе, лежат в плоскости эклиптики (плоскости XY). Однако также необходимо...
-
Зависимость направления неустойчивости от координат X, Y КА образует поверхность, проекции которой представлены на рис. 36-38. Рис. 36. Точки, для...
-
Математическое описание модели Модель "Radiocity" Расчет излучения в результате переотражения элементами космического аппарата друг на друга выполнятся с...
-
В работе была разработана методика расчета гало-орбит вокруг точки либрации L2 системы Солнце-Земля. Для расчета начальной скорости КА и величин...
-
Направление неустойчивости является направлением, исполнение импульса в котором наиболее эффективно. На основе методики, изложенной в разделе 4, был...
-
Расчет направления устойчивости производился для 244 плоских орбит Ляпунова, имеющих следующие начальные координаты: - X = X0 км, -1200000?...
-
Методика расчета направления неустойчивости - Космический аппарат
Эффективная коррекция орбиты КА в окрестности точки либрации подразумевает изменение скорости КА с целью компенсации влияния возрастающей компоненты (4)....
-
Для моделирования движения КА на гало-орбите был разработан сценарий в пакете GMAT. Он позволяет моделировать движение КА по ограниченной орбите с...
-
Исследование зависимости энергетики поддержания гало-орбиты от места и направления исполнения импульса Суммарный импульс, затрачиваемый на коррекции для...
-
Стратегиям удержания КА на ограниченных орбитах (гало-орбитах, орбитах Лиссажу и прочих) посвящены многие статьи. В данном разделе приведены краткие...
-
Стратегиям удержания КА на ограниченных орбитах (гало-орбитах, орбитах Лиссажу и прочих) посвящены многие статьи. В данном разделе приведены краткие...
-
Рис. 33 Иллюстрирует эволюцию максимального отклонения от номинальной траектории при изменении начального положения аппарата. На рисунке представлены...
-
Нецентральность гравитационного поля Земли - Возмущенное движение космического аппарата
Возмущенный движение гравитационный орбита При решении ограниченной задачи двух тел Земля представляется шаром со сферическим распределением плотности. В...
-
Зависимость направления неустойчивости от координаты Z - Космический аппарат
Орбиты, для которых были рассчитаны направления неустойчивости в предыдущем разделе, лежат в плоскости эклиптики (плоскости XY). Однако также необходимо...
-
В рамках данной работы производился расчет параметров отлетного вектора при заданных ограничениях на геометрию орбиты. С учетом заданных характеристик Az...
-
В данной работе проводится исследование движения центра масс МКА под действием различных возмущающих ускорений (от нецентральности гравитационного поля...
-
Здесь рассматривается межорбитальная транспортная система по своему построению аналогичная той, что исследована в работах [1, 2], однако дополнительно...
-
Необходимость разработки принципиально новых средств межорбитальной транспортировки (СМТ) связана со следующими причинами: размещением значительной части...
-
Для моделирования движения КА на гало-орбите был разработан сценарий в пакете GMAT. Он позволяет моделировать движение КА по ограниченной орбите с...
-
Как было сказано выше, в реальности существуют технические ограничения на точность определения положения КА, скорости КА, а также величину и направление...
-
Полученная система уравнений движения ЦМ КА интегрируется методом Рунге-Кутта 5-го порядка с переменным шагом. Начальные условия x0, y0, z0, VX0, VY0,...
-
1) Возмущающееся ускорение, вызванное нецентральностью гравитационного поля Земли. Рассмотрим потенциал поля притяжения Земли. При точном расчете...
-
Метод оскулирующих элементов - Возмущенное движение космического аппарата
Метод оскулирующих элементов сводится к тому, что исследование возмущенной траектории КА может быть сведено к анализу совокупности невозмущенных...
-
Основными поражающими факторами, при работе с компьютером, являются вредные излучения видеотерминального устройства. Видеотерминальное устройство должно...
-
Исходные данные Номинальная орбита, необходимая для выполнения задач МКА, имеет следующие параметры: - круговая, e = 0. - солнечно-синхронная, скорость...
-
Заключение - Космический аппарат
В работе была разработана методика расчета гало-орбит вокруг точки либрации L2 системы Солнце-Земля. Для расчета начальной скорости КА и величин...
-
Направление неустойчивости является направлением, исполнение импульса в котором наиболее эффективно. На основе методики, изложенной в разделе 4, был...
-
Интерполяция направления неустойчивости - Космический аппарат
Зависимость направления неустойчивости от координат X, Y КА образует поверхность, проекции которой представлены на рис. 36-38. Рис. 36. Точки, для...
-
Результаты расчета направлений устойчивости и неустойчивости - Космический аппарат
Расчет направления устойчивости производился для 244 плоских орбит Ляпунова, имеющих следующие начальные координаты: - X = X0 км, -1200000?...
-
Исследование зависимости энергетики поддержания гало-орбиты от места и направления исполнения импульса Суммарный импульс, затрачиваемый на коррекции для...
-
Масса топлива, необходимого для проведения коррекции траектории рассчитывается по формуле Циолковского: M = m0(1 - e-DVк/W) M0 = 597 кг - начальная масса...
-
Уравнения движения относительно центра масс МКА При рассмотрении движения относительно ЦМ КА используют уравнения Эйлера: JXWX + (JZ-JY)wYWZ = MXy + MXв...
Описание стратегии удержания КА - Космический аппарат