Образование звезд, стадия гравитационного сжатия - Эволюция и строение звезд

Согласно наиболее распространенной точке зрения, звезды образуются в результате гравитационной конденсации вещества межзвездной среды. Необходимое для этого разделение межзвездной среды на две фазы - плотные холодные облака и разреженную среду с более высокой температурой - может происходить под воздействием тепловой неустойчивости Рэлея-Тейлора в межзвездном магнитном поле. Газово-пылевые комплексы с массой, характерным размером (10-100) пк и концентрацией частиц n~102 см-3. действительно наблюдаются благодаря излучению ими радиоволн. Сжатие (коллапс) таких облаков требует определенных условий: гравитационная энергия связи частиц облака должна превосходить сумму энергии теплового движения частиц, энергии вращения облака как целого и магнитной энергии облака (критерий Джинса). Если учитывается только энергия теплового движения, то с точностью до множителя порядка единицы критерий Джинса записывается в виде: , где - масса облака, T - температура газа в К, n - число частиц в 1 см3. При типичных для современных межзвездных облаков температурах К могут сколлапсировать лишь облака с массой, не меньшей. Критерий Джинса указывает, что для образования звезд реально наблюдаемого спектра масс концентрация частиц в коллапсирующих облаках должна достигать (103-106) см-3, т. е. в 10-1000 раз превышать наблюдаемую в типичных облаках. Однако такие концентрации частиц могут достигаться в недрах облаков, уже начавших коллапс. Отсюда следует, что звездообразование происходит путем последовательной, осуществляющейся в несколько этапов, фрагментации массивных облаков. В этой картине естественно объясняется рождение звезд группами - скоплениями. При этом все еще неясными остаются вопросы, относящиеся к тепловому балансу в облаке, полю скоростей в нем, механизму, определяющему спектр масс фрагментов.

Коллапсирующие объекты звездной массы называются протозвездами. Коллапс сферически-симметричной невращающейся протозвезды без магнитного поля включает несколько этапов. В начальный момент времени облако однородно и изотермично. Оно прозрачно для собств. излучения, поэтому коллапс идет с объемными потерями энергии, главным образом за счет теплового излучения пыли, которой передают свою кинетическую энергию частицы газа. В однородном облаке нет градиента давления и сжатие начинается в режиме свободного падения с характерным временем, где G - гравитационная постоянная, - плотность облака. С началом сжатия возникает волна разрежения, перемещающаяся к центру со скоростью звука, а т. к. коллапс происходит быстрее там, где плотность выше, протозвезда разделяется на компактное ядро и протяженную оболочку, в которой вещество распределяется по закону. Когда концентрация частиц в ядре достигает ~ 1011 см-3 оно становится непрозрачным для ИК-излучения пылинок. Выделяющаяся в ядре энергия медленно просачивается к поверхности благодаря лучистой теплопроводности. Температура начинает повышаться почти адиабатически, это приводит к росту давления, и ядро приходит в состояние гидростатического равновесия. Оболочка продолжает падать на ядро, и на его периферии возникает ударная волна. Параметры ядра в это время слабо зависят от общей массы протозвезды:

По мере увеличения массы ядра за счет аккреции, его температура изменяется практически адиабатически, пока не достигнет 2000 К, когда начинается диссоциация молекул H2. В результате расхода энергии на диссоциацию, а не на увеличение кинетической энергии частиц, значение показателя адиабаты становится меньше 4/3, изменения давления не способны компенсировать силы тяготения и ядро повторно коллапсирует. Образуется новое ядро с параметрами, окруженное ударным фронтом, на которое аккрецируют остатки первого ядра. Подобная же перестройка ядра происходит при ионизации водорода.

Дальнейший рост ядра за счет вещества оболочки продолжается до тех пор, пока все вещество упадет на звезду либо рассеется под действием давления излучения или звездного ветра, если ядро достаточно массивно. У протозвезд с характерное время аккреции вещества оболочки tA >tКн, поэтому их светимость определяется энерговыделением сжимающихся ядер.

Звезда, состоящая из ядра и оболочки, наблюдается как ИК-источник из-за переработки излучения в оболочке (пыль оболочки, поглощая фотоны УФ-излучения ядра, излучает в ИК-диапазоне). Когда оболочка становится оптически тонкой, протозвезда начинает наблюдаться как обычный объект звездной природы. У наиболее массивных звезд оболочки сохраняются до начала термоядерного горения водорода в центре звезды. Давление излучения ограничивает массу звезд величиной, вероятно, . Если даже и образуются более массивные звезды, то они оказываются пульсационно-неустойчивыми и могут потерять значительную часть массы на стадии горения водорода в ядре. Продолжительность стадии коллапса и рассеяния протозвездной оболочки того же порядка, что и время свободного падения для родительского облака, т. е. 105-106 лет. Освещенные ядром сгустки темного вещества остатков оболочки, ускоренные звездным ветром, отождествляются с объектами Хербига-Аро (звездообразными сгущениями, имеющими эмиссионный спектр). Звезды малых масс, когда они становятся видимыми, находятся в области Г.-Р. д., занимаемой звездами типа Т Тельца (карликовыми вспыхивающими звездами), более массивные - в области, где находятся эмиссионные звезды Хербига (неправильные переменные звезды ранних спектральных классов с эмиссионными линиями в спектрах).

Эволюционные треки ядер протозвезд с постоянной массой на стадии гидростатического сжатия показаны на рис. 1. У звезд малых масс в момент, когда устанавливается гидростатическое равновесие, условия в ядрах таковы, что энергия в них переносится конвекцией. Расчеты показывают, что температура поверхности полностью конвективной звезды почти постоянна. Радиус звезды непрерывно уменьшается, т. к. она продолжает сжиматься. При неизменной температуре поверхности и уменьшающемся радиусе светимость звезды должна падать и на Г.-Р. д. этой стадии эволюции соответствуют вертикальные участки треков.

По мере продолжения сжатия температура в недрах звезды повышается, вещество становится более прозрачным, и у звезд с возникают лучистые ядра, но оболочки остаются конвективными. Менее массивные звезды остаются полностью конвективными. Их светимость регулируется тонким лучистым слоем в фотосфере. Чем массивнее звезда и чем выше ее эффективная температура, тем больше у нее лучистое ядро (в звездах с лучистое ядро возникает сразу). В конце концов, практически вся звезда (за исключением поверхностной конвективной зоны у звезд с массой ) переходит в состояние лучистого равновесия, при котором вся выделяющаяся в ядре энергия переносится излучением.

Похожие статьи




Образование звезд, стадия гравитационного сжатия - Эволюция и строение звезд

Предыдущая | Следующая