Микрофизика - Теории происхождения Вселенной

Вселенная микрофизика мир ньютон

Согласно бурно развивающейся в последние годы кварковой теории все адроны состоят из "более" элементарных частиц -- кварков. Если эта теория верна (а она получает сейчас убедительные доказательства в различных экспериментах), то при температуре около нескольких тысяч миллиардов градусов Кельвина адроны, по-видимому, уже не могут существовать, они разбиваются на составляющие их кварки, точно так же, как атомы при нескольких тысячах градусов распадаются на ядра и электроны, а ядра, в свою очередь, при миллиарде градусов -- на протоны и нейтроны.

Итак, все адроны состоят из кварков. И возникает естественный вопрос: где же предел элементарности частиц? Ведь сравнительно недавно круг элементарных частиц был ограничен нейтронами, протонами, электронами и фотонами. А сейчас, мало того" что одних адронов порядка сотни, оказалось, они неэлементарны, состоят из кварков, антикварков. Неужели в микромире работает принцип "русской матрешки"?

Мы опять не можем ответить на этот вопрос. Физике неизвестна сегодня модель праматерии.

Подходы к этой общей теории, которая должна в конечном итоге связать микро - и макромиры, в центре внимания и физики элементарных частиц, и космологии. Почему?

Мы уже говорили о гравитационном и электромагнитном взаимодействии в физике. Но сегодня известно еще два типа взаимодействий. Это уже упоминавшееся сильное и так называемое слабое взаимодействия. Слабые силы взаимодействия названы так потому, что на масштабах длин порядка размеров ядер они слабее не только сильных (ядерных), но и электромагнитных. Тем не менее, роль их в природе огромна. Не будь слабых взаимодействий, были бы невозможны процессы, лежащие в основе термоядерных реакций, происходящих в недрах Солнца. Другими словами, если бы не было слабых взаимодействий, погасло бы Солнце! Поистине мал золотник, да дорог!

Эти два типа взаимодействия обладают очень малым радиусом действия: сильное работает на расстоянии порядка 10-13 сантиметра, а радиус действия слабого по порядку величины составляет около 10-16 сантиметра. Сейчас на повестке дня с особой остротой стоит проблема создания единой основополагающей теории, объединяющей все известные силы. Пока удалось объединить электромагнитные и слабые силы. Возникла модель так называемых электрослабых взаимодействий. На очереди - модели великого объединения, или, как их еще называют, гранд-модели. Совершенно ясно, что законченная гранд-теория должна с единых позиций объяснить действие всех сил в микромире.

Это очень многообещающее направление в физике. Гранд-модели предсказывают массу удивительных вещей и, в частности, распад протона. Сейчас экспериментаторы пытаются обнаружить это явление, осуществить, как считают многие физики, эксперимент века.

Физика микромира, так же как и физика макромира, имеет дело с огромными энергиями. Недаром в разных странах мира: в СССР, в США, Швейцарии, Германии -- построены ускорители, на которых удается исследовать частицы с энергиями порядка сотен ГЭВ. Эта энергия соответствует температурам в миллион миллиардов градусов. Может ли современная экспериментальная физика подняться еще выше по шкале энергии?

Тридцать с лишним лет назад Э. Ферми выдвинул идею ускорителя-гиганта, опоясывающего весь земной шар. Такой ускоритель представлял бы собой расположенное в космосе огромное кольцо вокруг Земли с радиусом около 7 тысяч километров. Это дало бы возможность достигнуть энергий в 107--108 ГЭВ, или 1020--1021 К. Ясно, что постройку такого ускорителя нельзя назвать делом ближайшего будущего.

Попытки разработки гранд-моделей, где при еще более высоких энергиях объединяются и электрослабые, и сильные взаимодействия, требуют энергии порядка 1014--1016 ГЭВ (1026 - 1028 К!). Для получения таких энергий нужно было бы построить кольцевой ускоритель порядка размеров Солнечной системы. Это уже чересчур не только для физики обозримого будущего, но и для научной фантастики. Ведь пока диаметр самого большого кольцевого ускорителя -- "всего" 2,2 километра.

При переходе к высоким энергиям порядка 1014 ГЭВ мир элементарных частиц должен стать в известном смысле проще. Ярмарочное обилие их должно "испариться" и число частиц существенно уменьшиться.

Здесь уместна следующая аналогия. Число минералов на Земле исчисляется несколькими тысячами. Но давайте начнем увеличивать температуру Земли. Стоит нам достичь двух-трех тысяч градусов, когда плавятся самые тугоплавкие минералы,-- и мы будем иметь достаточно гомогенную жидкость. Это будет расплав, не содержащий ни одного минерала. В нем будут присутствовать лишь элементы таблицы Менделеева, а их всего около сотни. Охладим его, и по мере охлаждения в нем начнут возникать множество самых различных типов минеральных зерен. Быть может, именно так, по мере перехода к неизмеримо более высоким температурам происходит некоторое "упрощение" системы элементарных частиц.

Но так ли на самом деле оптимистично выглядят перспективы теории элементарных частиц? Объединение электромагнитных и слабых взаимодействий -- действительно триумф теоретической физики, причем триумф, увенчанный убедительным экспериментом. Мы знаем теперь, как ведет себя вещество и что оно собой представляет до энергий 100 ГЭВ. Но насколько справедлива экстраполяция на энергии 1014 ГЭВ? Ведь здесь разница в 12 порядков, в тысячу миллиардов раз?

Нам же важно сейчас отметить следующее. В нашем мысленном эксперименте мы начали сжимать Вселенную для того, чтобы посмотреть, что будет при этом с веществом. Мы дошли до энергии в сотни ГЭВ. Здесь есть эксперимент, здесь можно с уверенностью сказать, что физика дает хорошие прогнозы по интересующему нас вопросу. Теперь можно подвести некоторые итоги. Этой энергии соответствует температура 1015 К. Ясно, что ни атомных ядер, ни протонов, ни нейтронов при такой температуре нет. Есть лишь частицы, претендующие на роль истинно элементарных: лептоны, фотоны да вырвавшиеся на свободу кварки. Весь этот кварко-лептонный суп находится в состоянии, близком к термодинамическому равновесию. Это означает, что концентрация частиц поддерживается постоянной, скорости их рождения и гибели равны.

Можно, конечно, пойти дальше и пытаться смотреть, что будет с веществом при более высоких энергиях. Теоретики выпустили огромное количество работ, посвященных этой теме. Но, во-первых, твердо установившейся теории здесь нет, во-вторых, когда мы приближаемся к планковскому порогу, мы волей-неволей должны рассматривать Вселенную, радиус кривизны которой меньше размеров элементарных частиц, с плотностью вещества, достигающей 1094 г/см3. Это, вообще говоря, terra incognita для современной физики, и вряд ли кто-либо возьмется сказать, что представляет собой сверхплотная Вселенная.

При температуре больше 1011К концентрации протонов и нейтронов примерно одинаковы. Но с понижением температуры концентрация протонов возрастает. Действительно, ведь масса протона меньше массы нейтрона, и поэтому в указанных выше реакциях образование протона при определенной температуре становится более выгодным энергетически. С дальнейшим понижением температуры эти реакции вообще прекращаются, и мы уже имеем дело с "замороженными" концентрациями протонов и нейтронов во Вселенной, когда доля нейтронов составляет лишь около 15%. Здесь возникает естественный вопрос. Ведь во время адронной эры во Вселенной должны присутствовать как частицы, так и античастицы. А речь шла сейчас лишь о протонах. Где же антипротоны? Почему наша Вселенная несимметрична в зарядовом отношении? Почему в ней есть вещество и почти нет антивещества?

Вопрос этот очень сложный и, нужно сказать честно, не имеющий на сегодняшний день окончательного решения. Более того, некоторые ученые, например лауреат Нобелевской премии по физике X. Альвен, считают, что антивещество представлено во Вселенной на паритетных началах с обычным веществом. Большинство ученых находит, что X. Альвен не прав. Но в науке голосование не принято, и на поставленные вопросы надо пытаться давать исчерпывающий ответ. Итак, если изначально число частиц и античастиц было одинаковым, то в принципе все они за какое-то время должны были бы в результате аннигиляции превратиться в фотоны, в свет, в нейтрино и антинейтрино. Но этого нет, и, по крайней мере, для нашей Галактики твердо установлено отсутствие звезд и планет из антивещества.

С другими участками Вселенной, которые можно наблюдать сегодня, дело посложнее. Ведь, наблюдая другие галактики, астрономы имеют дело лишь с квантами электромагнитного излучения, и поэтому, если бы какая-либо удаленная галактика состояла из антивещества, мы не могли бы узнать об этом даже в принципе, поскольку антивещество излучает фотоны так же, как и обычная материя. Это, кстати говоря, один из сильных аргументов Альвена и его немногочисленных сторонников.

Вещество Вселенной все-таки состоит, по всей видимости, из протонов. Работами последних лет достаточно убедительно показано, что в этих реакциях кварков должно рождаться чуть больше, чем антикварков. Насколько? Ответ таков: на три миллиарда антикварков должно родиться 3 миллиарда и еще три кварка. Тогда 6 миллиардов кварков и антикварков проаннигилируют, а три оставшихся кварка "упадут" со временем в адронный "мешок" и образуют протон или нейтрон. Важно отметить, что в результате всех этих процессов во Вселенной на один протон приходится примерно миллиард фотонов и миллиард нейтрино.

Таким образом, вопрос о том, почему наша Вселенная состоит из вещества, а антивещество отсутствует, находит решение с использованием гранд-моделей.

Процесс синтеза ядер легких элементов продолжался около трех минут после начала Большого Взрыва. С падением температуры синтез гелия прекратился, и теперь уже "заморозились", то есть остались неизменными, относительные концентрации гелия и водорода: ядра водорода составляли 70 процентов вещества Вселенной, ядра атомов гелия -- 30. Необходимо заметить, что отношение концентраций ядер гелия и водорода друг к другу сильно зависит от темпа расширения и, соответственно, от средней плотности вещества во Вселенной. Поэтому в какой-то мере это отношение может использоваться для проверки правильности той или иной космологической модели. Оценки содержания гелия в горячих звездах во внешней атмосфере Солнца, в солнечном ветре и т. д. дает достаточное основание для подтверждения правильности "стандартной" теории (дающей цифру в 30 процентов для гелия).

Нейтрино исключительно слабо взаимодействуют с веществом, для них прозрачен даже наш земной шар. Поэтому примерно через 0,3 секунды после Большого Взрыва нейтрино начинают "игнорировать" все вещество Вселенной (включая, конечно, и электроны с позитронами). Их число уже не меняется. Говорят, что произошло отделение нейтрино от вещества. Этот процесс происходит при температуре больше десяти миллиардов градусов.

С понижением температуры продолжает играть роль реакция рождения электронов и позитронов из энергичных фотонов, но при пяти миллиардах градусов идет уже только реакция аннигиляции. Это приводит к тому, что излучение становится главной, основной частью Вселенной.

Конец лептонной эры уже близок. Ее сменяет эра радиации, или, как ее еще называют, эра фотонной плазмы. Число фотонов в миллиард раз превышает к этому моменту число выживших протонов.

Бурная молодость Вселенной закончилась. Она была непродолжительной. Что значат несколько минут по сравнению со многими миллиардами лет? Но именно эти несколько минут определили весь будущий облик нашего мира. Изменись хоть немного темп расширения Вселенной в эти первые сотни секунд, изменился бы и химический состав Вселенной. Например, если бы "замораживание" нейтронно-протонного состава произошло раньше, чем через одну секунду после Большого Взрыва, то большая часть вещества Вселенной состояла бы не из водорода, а из гелия, и наверняка мы имели бы совершенно другой мир, чем тот, который перед нами сегодня.

Когда прошли процессы аннигиляции, главную массу вещества Вселенной составляли фотоны, нейтрино и примесь высокотемпературной нейтральной плазмы, состоящей из протонов, ядер атомов гелия и электронов. Нейтрино, как мы уже говорили, с веществом не взаимодействует, а фотоны, наоборот, энергично рассеиваются на электронах, и поэтому вещество для них непрозрачно. Но с понижением температуры фотоны постепенно теряли свою энергию и в конце концов, когда "термометр" стал показывать примерно 4000К, начались процессы рекомбинации электронов и ядер атомов гелия.

Энергии фотонов уже недостаточно, чтобы ионизировать атомы, и во Вселенной появляются сначала атомы гелия, а затем и водорода, который становится главным элементом мира. Процесс рекомбинации начался, когда Вселенной было около 300 тысяч лет, и закончился еще через 700 тысяч лет. Этот период также очень важен для космологии. Фотоны, как мы знаем, взаимодействовали с высокотемпературной плазмой, и она была для них непрозрачной. Но, как только гелий и водород стали нейтральными, фотоны получили возможность распространяться свободно, произошло, как принято говорить в космологии, отделение вещества от излучения. С этого момента Вселенная стала прозрачной для фотонов, а они продолжали остывать по мере расширения Вселенной. Как мы знаем по температуре реликтового излучения, "остыли" они довольно сильно, от 4000 К до 3 К, то есть температура уменьшилась за это время более чем в тысячу раз. Ну а Вселенная соответственно увеличила свои размеры примерно в тысячу раз.

Итак, мы остановились на моменте времени, когда Вселенная еще молода. Ей примерно миллион лет. Она заполнена фотонами, водородом, гелием и нейтрино. Правда, многие физики уверены в том, что есть еще целый зоопарк различных таинственных частиц, в частности гравитонов и монополей.

Похожие статьи




Микрофизика - Теории происхождения Вселенной

Предыдущая | Следующая