Гравитационные волны - Черные дыры

Теория тяготения Эйнштейна предсказала существование гравитационных волн. Они подобны электромагнитным, которые являются быстро меняющимся электромагнитным полем, "оторвавшимся" от своего источника и распространяющимся в пространстве с предельно большой скоростью -- скоростью света. Точно так же гравитационные волны являются изменяющимся гравитационным полем, "оторвавшимся" от своего источника и летящим в пространстве со скоростью света.

Известно, чтобы обнаружить электромагнитную волну, достаточно в принципе взять электрически заряженный шарик и наблюдать за ним; когда на него станет падать электромагнитная волна, шарик придет в колебательное движение. Но чтобы обнаружить гравитационную волну, одним шариком не обойтись. Потребуется минимум два, помещенных на некотором расстоянии друг от друга. При падении на них гравитационной волны шарики будут то несколько сближаться, то удаляться. Измеряя изменение расстояния между ними, можно обнаружить волны тяготения. Одним шариком не обойтись, т. к. если на шарик не действуют никакие посторонние силы, то он находится в поле гравитационной волны в состоянии невесомости. На шарике не ощущается никаких сил тяготения, и поэтому невозможно обнаружить проходящую гравитационную волну. Два шарика, находясь на некотором отдалении, подвергаются воздействию поля чуть-чуть по-разному, и между ними возникает относительное движение. Вот это относительное движение и можно измерить.

В случае электромагнитных волн для их обнаружения не обязательно брать даже шарик -- существуют разные типы электромагнитных антенн. В случае же гравитационных волн придуманы тоже разные конструкции гравитационных антенн.

Но все выглядит относительно просто только теоретически. На самом деле в сколько-нибудь привычных для нас условиях возникающие гравитационные волны крайне слабы: они должны излучаться при ускоренных движениях массивных тел. Но даже при движении небесных тел излучение гравитационных волн ничтожно. Так, при движении планет в Солнечной системе излучается гравитационная энергия, равная мощности всего лишь сотни электрических лампочек. Хотя это число и может показаться большим по нашим земным меркам, оно ничтожно по сравнению, скажем, с мощностью светового излучения Солнца, которое в 1023 раз больше. Попытки же создать лабораторные излучатели гравитационных волн пока и вовсе обречены на неудачу.

Скажем, можно сделать излучатель гравитационных волн в виде быстро вращающегося стержня. Если взять стальную болванку длиной 20 метров, массой 500 тонн и раскрутить ее до предела на разрыв центробежными силами (частота вращения при этом около 30 герц), то она будет излучать всего 10-22 доли эрга в секунду.

Приведенные примеры показывают, насколько трудны попытки обнаружения гравитационных волн. В прямых экспериментах на Земле эти волны пока не обнаружены, хотя в разных лабораториях мира построены и строятся уже десятки гравитационных антенн, предназначенных для приема волн тяготения из космоса. Некоторые астрономические наблюдения прямо показывают, что гравитационные волны излучаются при движении небесных тел. При движении планет или, например, движении звезд в двойных звездных системах излучаются гравитационные волны, уносящие энергию. Эти потери энергии обычно очень малы. Но чем больше масса движущихся небесных тел и меньше расстояние между ними, тем интенсивнее излучение. Потери энергии в системе двойной звезды приводят к постепенному сближению звезд и уменьшению периода их обращения вокруг центра масс. Конечно, это происходит крайне медленно, и тем не менее с помощью специальных способов наблюдения такое уменьшение периода в одном случае удалось зафиксировать, причем в точном согласии с предсказаниями теории Эйнштейна.

Вернемся к движению тела вокруг черной дыры по круговой орбите. При этом будет происходит излучение гравитационных волн и постепенное уменьшение радиуса орбиты. Так будет продолжаться до тех пор, пока радиус не примет критического значения трех гравитационных радиусов. На меньших расстояниях движение уже неустойчиво. Следовательно, тело, достигнув критической орбиты, сделав еще несколько оборотов и излучив некоторое количество энергии, свалится с этого расстояния в черную дыру.

Какое общее количество энергии излучит тело в виде гравитационных волн за все время, пока оно двигалось вокруг черной дыры по окружности с медленно уменьшающимся радиусом? Излучение происходит, как мы видели, крайне малоинтенсивно, но сам процесс этот длится чрезвычайно долго! Таким образом, полное количество излученной энергии будет велико. Известно, что при ядерных превращениях, например, водорода в гелий или в еще более тяжелые элементы, определенная доля массы превращается в энергию. Максимально во всех видах реакций эта доля может составить около одного процента. В случае же излучения гравитационных волн при движении вокруг черной дыры излучается энергия в шесть раз больше!

Гравитационные волны крайне слабо взаимодействуют с веществом. Поэтому выделяющуюся в виде гравитационных волн энергию очень трудно уловить и использовать для практических нужд.

Академик В. А. Фок был первым, кто обратил внимание на возможность использования астрофизических катастроф как источника мощного гравитационного излучения (1948).Согласно современным расчетам, при слиянии двух нейтронных звезд излучается около 1045 Дж в виде всплеска гравитационного излучения, то есть около 1% от полной энергии (Е = mc2) двух звезд. Гравитационная волна растягивает и сжимает пространство. Если в ее поле есть две разнесенные системы координат, то волна вызывает их относительное колебательное движение. У гравитационной волны возможны две поляризации. В первой волна в течение полупериода сжимается по вертикали и растягивается по горизонтали, в следующий полупериод - наоборот. Вторая возможная поляризация сдвинута на 45° по отношению к первой. В настоящее время ведутся поиски гравитационных волн длиной от размера Вселенной до нескольких метров, иными словами, в диапазоне частот от 10-16 до 108 Гц, то есть частотный диапазон поисков перекрывает более чем 20 порядков. Хорошая чувствительность уже достигнута или планируется в интервале частот от 10 до 104 Гц, или на длинах волн от 30 тыс. км до 30 км. На этот диапазон рассчитаны проекты LIGO и VIRGO. На более низкие частоты - от 10-1 до 10-4 Гц гравитационного излучения (длины волн порядка расстояния от Земли до Солнца) - нацелен проект LISA - лазерная космическая антенна, которая, надеюсь, будет запущена в недалеком будущем.

Проект LIGO (Laser Interferometer Gravitational wave Observatory) - лазерная интерферометрическая гравитационно-волновая обсерватория - изначально национальный проект США. Проект VIRGO носит латинское название скопления галактик в созвездии Девы (примерно 30 Мпс от Земли), изначально итало-французский.

LISA (Laser Interferometer Space Antenna) - лазерно-интерферометрическая антенна в космосе - совместный проект Европейского космического агентства и Национального управления по аэронавтике и исследованию космического пространства США.

LIGO/VIRGO - это, по существу, сеть антенн относительно высокочастотного диапазона. Она включает две антенны LIGO - одна в Хэнфорде, другая в Ливингстоне (обе в США) и антенну VIRGO недалеко от Пизы (Италия). К сети примыкают более скромные по размерам (и соответственно по ожидаемой чувствительности) антенна в Японии (ТАМА) и в северной части Германии (GEO-600). Необходимо использовать всю информацию, которая регистрируется этими антеннами, то есть всю сеть, чтобы получить максимум сведений о свойствах гравитационных волн и их источников.

Собственно детектор антенны представляет собой четыре массивных зеркала, сделанных либо из плавленного кварца, либо из сапфира, которые подвешены на тонких кварцевых нитях длиной около 1 м. Все зеркала размещены в вакуумных камерах, соединенных вакуумными трубами. Расстояние между зеркалами в каждой паре 4 км. Когда гравитационная волна проходит, она сначала сдвигает одну пару зеркал и раздвигает другую, в следующий период - наоборот. Лазерный интерферометр регистрирует эти колебания.

Принцип использования пары свободных масс-зеркал и лазерного интерферометра для регистрации их малых колебаний, вызванных гравитационной волной, предложен членом-корреспондентом РАН В. И. Пустовойтом и профессором М. Е. Герценштейном в 1962 г.

Несколько чисел для иллюстрации: при расстоянии 4 км между зеркалами и амплитуде волны 10-21 величина амплитуды относительных колебаний зеркал 4х10-16 см при оптимальной ориентации плеч антенны относительно источника. На прототипе LIGO, где расстояние между зеркалами составляло 40 м, после многих лет работы такая чувствительность при регистрации взаимных колебаний моделей зеркал уже достигнута. В 2002 г. в LIGO I при расстоянии между зеркалами 4 км чувствительность должна быть немного лучше, чем в прототипе. На следующем этапе (LIGO II) в 2006 г. чувствительность должна быть повышена: можно будет зарегистрировать амплитуду колебаний зеркал около 10-17 см.

Ясно, что достижение такой чувствительности - это очень серьезная технологическая задача, ведь величина амплитуды колебаний в 10 тыс. раз меньше размера атомного ядра (10-13 длины оптической волны, или половина длины квантовой волновой функции 30-килограммового зеркала). Потребовалось весьма значительно усовершенствовать технологию высокочувствительных измерений, повысить стабильность лазеров, увеличить отражающую способность оптических зеркал, существенно развить квантовую теорию измерений и создать соответствующие технологии.

Ответственность за разработку конструкций и операции на микроинтерферометрах лежат на Калифорнийском технологическом институте. Но существует и международное научное сообщество, которое формулирует задачи, проводит исследовательские работы. В нем участвуют 250 ученых и инженеров из 25 институтов. Большую роль в этом сообществе играют профессор В. Б. Брагинский и его коллеги из Московского государственного университета. Подвес зеркал и тепловые флуктуации в нем, избыточные шумы, квантовые ограничения и квантовые невозмущающие измерения - это проблемы, которые решает группа из МГУ. А задача Калифорнийского технологического института - использовать все разработки МГУ, чтобы превратить их в технологически надежные устройства, которыми будут оборудованы антенны. В содружестве научные группы разрабатывают различные узлы и элементы для LIGO II, чтобы потом, в окончательном варианте, использовать их в больших гравитационных антеннах.

Принципиальная схема лазерной гравитационной антенны

Первое, на что можно надеяться, - это обнаружение всплесков гравитационного излучения при спиральном сближении либо двух нейтронных звезд, либо черных дыр в последней стадии перед столкновением. На эту стадию приходится примерно 1000 или 10000 циклов (оборотов) при средней частоте около 100 Гц или несколько сотен герц. При чувствительности LIGO I нет 100%-ной гарантии, что такие всплески будут зарегистрированы, но при чувствительности LIGO II вероятность их наблюдения высокая. Антенны LIGO II смогут зарегистрировать слияние нейтронных звезд на расстоянии 1 млрд. световых лет от Земли. Частота ожидаемых событий - от двух в год (пессимистическая оценка) до одного в день (оптимистическая оценка). Слияние нейтронных звезд с черными дырами можно будет наблюдать с вдвое большего расстояния. Пессимистическая оценка - одно событие в год, оптимистическая - три всплеска в день. А слияние черных дыр будет видно с расстояния 5 млрд. световых лет (это близко к величине горизонта событий). Частота ожидаемых событий - от одного в месяц (пессимистическая оценка) до шести в день (оптимистическая оценка).

Когда всплеск гравитационного излучения будет зарегистрирован, можно будет измерить массу сливавшихся компонентов, вращательный момент, направление, откуда пришло излучение, и расстояние до источника. Кроме того, по форме всплеска можно будет составить представление о множестве релятивистских гравитационных эффектов, которые до сих пор не наблюдались. При слиянии нейтронной звезды с черной дырой последняя разорвет нейтронную звезду, и по форме всплеска можно будет судить о свойствах ядерной материи, из которой состоит нейтронная звезда.

Когда две черные дыры сливаются, мы имеем возможность наблюдать скрутки пространства-времени, динамику скруток. Черные дыры "сделаны" не из обычной материи, а из скрученного пространства-времени. Интересно отметить, что черная дыра при своем вращении увлекает за собой пространство примерно так же, как торнадо из-за вращения закручивает воздух. Ученые хотят узнать, что будет происходить, когда две черные дыры, вращающиеся каждая вокруг своей оси и вращающиеся обе вокруг общего центра масс, будут сливаться. Форма всплеска гравитационного излучения принесет информацию об этом процессе. Естественно стремление специалистов построить теоретическую модель процесса слияния двух черных дыр и с помощью суперкомпьютера рассчитать форму гравитационного всплеска, рожденного в таком процессе. Решение этой задачи потребует использования самых мощных компьютеров, которые когда-либо применялись на нашей планете.

Примерно через 10 лет поле поисков гравитационного излучения расширится: вступит в строй проект LISA. Пробный запуск элементов антенны намечен на 2006 г., а окончательный - на 2010-й. Антенна будет расположена на той же орбите вокруг Солнца, что и Земля. В ней, как и в антеннах LIGO и VIRGO, будут использованы зеркала (центральный элемент в спутниках) и лазерный интерферометр для измерения их малых относительных колебаний (амплитуда 10-9 см при расстоянии между зеркалами в 5 млн. км). В отличие от наземных лазерных антенн в LISA диапазон частот гравитационного излучения составляет 10-4-10-1 Гц. Соответственно и программа поисков нацелена на другие источники. Наземные антенны и антенна на околоземной орбите (относительно низкочастотная) позволят начать изучение того, что происходило во Вселенной в первую секунду ее существования. Можно предсказать, что в ближайшие 20-30 лет с помощью этих антенн мы сможем узнать "темную" сторону устройства нашей Вселенной, в которой почти не было электромагнитного излучения, а вся информация была связана с излучением гравитационных волн.

Похожие статьи




Гравитационные волны - Черные дыры

Предыдущая | Следующая