Эволюция звезд - Происхождение и эволюция звезд

"Строение звезды и источник ее энергии казались в какой-то степени выясненными, но возникли другие, не менее важные вопросы. Так, оказалось, что Солнце, возраст которого оценивали в 5 млрд. лет, бедно водородом и богато гелием, хотя за это время оно должно было истратить меньше водорода и образовать меньше гелия. Можно, конечно, допустить, что раньше оно было горячее, и процессы шли скорее, однако геологические данные свидетельствуют, что все это время количество солнечной энергии практически не менялось.

Предположение о том, что часть водорода была израсходована еще на стадии разреженной вращающейся туманности маловероятно. В разряженных туманностях тяготение слабо настолько, что вызывает повышение температуры только в самом центре, но этого недостаточно для начала ядерных реакций синтеза. Такая туманность сжималась бы медленно и производила энергию только за счет тяготения, как предполагал Гельмгольц, и количество этой энергии не менялось. По мере сжатия она концентрировалась бы все в меньшем объеме, и, достигнув критической отметки, сжимающаяся туманность вспыхнула бы и превратилась в звезду.

Если бы это было так, то в самом центре этой звезды могли начаться ядерные реакции и стали рождаться более тяжелые элементы. На Солнце много элементов более сложных, чем гелий, кроме того, сложные элементы составляют сложную семью - планет. Получается и они из самого центра Солнца?! Это противоречит гипотезе происхождения их из туманности, стало быть, тяжелые элементы должны появиться как-то иначе.

Мир звезд многообразен: Антарес имеет красный цвет, Капелла - желтый, Сириус - белый, Вега - голубовато-белый. Звезды отличаются по яркости, и еще древние ввели звездные величины. В 19 столетии звезды рассортировали по расстояниям и массам, а в конце века - по спектрам.

В 1900 году американский астроном Эдвард Чарльз Пикеринг ввел спектральные классы, обозначив их буквами латинского алфавита. Границы между классами были нечеткими, и в последствии каждый класс разбили на группы от 0 до 9, так что наше Солнце по спектру попало в G2. Когда при истолковании спектров стали учитывать ионизацию, стало возможным по спектральным сериям определять температуру звезд. Состав же звезд не отличался разнообразием: как и Солнце, большинство звезд состояло преимущественно из водорода и гелия. Тогда спектральные классы выстроили в порядке убывания температуры: О, В, А, F, G, К, М. Имеется еще 4 дополнительных класса: для холодных звезд - R, N, S, для горячих - W. Очевидно, что без классификации звезд нельзя говорить об их эволюции (рис. 1).

Герцшпрунг и Генри Ресселл составили диаграмму зависимости светимостей звезд от их спектральных классов (диаграмма носит имена обоих ученых): у оси абсцисс откладываются спектральные классы звезд (иногда соответствующие показатели цвета или температуры), по оси ординат - светимости звезд L (или звездные величины M). Оказалось, что на диаграмме звезды располагаются не беспорядочно, а образуют несколько последовательностей (рис. 2,3).

Так, в окрестности Солнца большинство звезд сконцентрированы вдоль сравнительно узкой полосы, протянувшейся из верхнего левого угла вниз (Главная последовательность)." (2) "Стационарное состояние звезд, проходящих свой путь на Главной последовательности, не означает, что в них прекращаются направленные процессы развития. Горение водорода оставляет свои следы в структуре светила, подводя время от времени систему к критическим состояниям, за которыми следует более или менее радикальная трансформация программы эволюции. По крайней мере две фазы развития проходит звезда солнечной массы в течение периода Главной последовательности." (4)

"В правом верхнем углу расположены сверх гиганты (наиболее крупные звезды из всех).

Группа звезд-гигантов компактна и расположена вверху диаграммы между Главной последовательностью и группы сверх гигантов. Параллельно Главной последовательности, несколько ниже ее, расположены звезды, образующие последовательность субкарликов, в левом нижнем углу диаграммы - группа белых карликов. Звезды по светимости разделены на семь классов, обозначенных римскими цифрами. Класс светимости пишется после спектрального класса звезды, например, Солнце: звезда класса G 2V.

На основе полученных закономерностей распределения звезд на диаграмме и известных в начале века физических моделей, Ресселл построил эволюционный путь звезды. Переходя от стадии холодной туманности в голубовато-белую стадию, звезда перемещается в верхней части диаграммы справа налево, пока не достигнет верхнего левого конца Главной последовательности. Далее звезда под влиянием поля тяготения сжимается (при этом нагревания не происходит, а ее вещество достигает плотности, уже не соответствующей газу) и остывает, превращаясь в желтый карлик, как наше Солнце. Затем она станет красным карликом и погаснет совсем, став черным карликом - пеплом угасшей звезды. Так звезда скользит по Главной последовательности из верхнего левого угла к нижнему правому. Эту гипотезу, просуществовавшую всего десятилетие, назвали теорией скользящей эволюции звезд.

Когда были открыты источники энергии звезд, вопрос о массе звезды приобрел важное значение. Практически наиболее верным способом определения массы звезды являются исследования двойных звезд. Оказалось, что положение звезды на

Главной последовательности определяется ее массой.

Соотношения светимостей звезд и их радиусов (L/LС) = (R/RС)5,2, светимостей и масс (L/LC) = (М/МC)3,9 сравнили со значением количества энергии, излучаемой поверхностью звезды за единицу времени L/4П R2, и получили соотношение между температурой поверхности и ее массой (Т/ТC) = (М/МC)0,6. Итак, чем меньше масса звезды, тем меньше ее поверхностная температура, тем более поздним будет ее спектральный класс. Эта формула позволяет оценить массу звезды и по ее светимости:

(М/МC)= (L/LС)0,256 = 3,04 . 10-0,102 M

Соотношения между параметрами звезд легли в основу моделей внутреннего строения звезд, полученных Эддингтоном, исходя из условий равновесия плазмы внутри звезд. Эддинггон также детально исследовал природу белых карликов.

К 1924 г. была составлена новая диаграмма соотношений "масса -- светимость", из которых следует, что с увеличением массы скорость потребления топлива растет быстрее, чем его запас. Иначе говоря, чем больше и горячее звезда, тем быстрее кончится ее топливо и тем скорее кончится ее "жизнь" на Главной последовательности, где находится 0,99 всех видимых звезд. Так, Солнце, по оценкам ученых, пробудет на ней еще 8 млрд. лет, т. е. оно еще не достигло своего среднего возраста. Если бы Солнце принадлежало к классу А, то его срок (5 млрд. лет) был бы на исходе. Для такой большой и горячей звезды, как S Золотой Рыбы, этот срок был бы всего 2-3 млн. лет. В теории Эддингтона все свойства звезды основывались на модели идеального газа, поэтому, как и газ, звезды у него при сжатии обязательно нагревались, что опровергало теорию скольжения.

Р. Трюмплер, доказавший в 1930г. существование межзвездной пыли, детально и систематизирование исследовал звездные скопления. Сопоставление его результатов с теорией привело к следующей схеме эволюции звезд. Облако газа и пыли - газопылевой комплекс -- сжимается и нагревается, возникающие при этом неоднородности приводят его в состояние гравитационной неустойчивости, и он распадается на части. Пока такой фрагмент прозрачен для инфракрасного излучения, температура его внутренних слоев не повышается, и сжатие происходит ускоренно. С некоторого момента изотермическое сжатие переходит в адиабатическое, объект становится непрозрачным, давление и температура внутри растут, замедляя сжатие. Так возникает протозвезда ("это обособившиеся из газовопылевого облака в результате его гравитационной неустойчивости плотные конденсации вещества, в недрах которых еще не достигнуты температуры, необходимые для начала термоядерных реакций - основного источника энергии звезд" (11) ).

Внутренние слои разогреваются за счет гравитационной энергии падающего к центру вещества, объект как бы закипает, что отражается бурными вспышками на поверхности. Примером такой звезды является Т Тельца. Это состояние продолжается до тех пор, пока разогрев не достигнет значений температуры, достаточных для начала термоядерных реакций. Так протозвезда приобретает статус звезды. В соответствии со своей массой звезда занимает определенное место на Главной последовательности. Наше Солнце проделало такой путь примерно за 2 млн. лет. Звезда, с массой примерно равной солнечной, "сядет" в среднюю часть последовательности и останется там около 10 млрд. лет.

По мере выгорания водорода давление в оболочке повышается, внешние слои расширяются, и звезда начинает покидать Главную последовательность (двинется сначала чуть вправо и вниз), так как на расширение тратится некоторая энергия, и светимость звезды уменьшается. Равновесие будет достигнуто за счет формирования протяженной зоны конвекции, и звезда перейдет в группу красных гигантов. Что будет дальше? Огромная атмосфера красного гиганта может не обеспечить перенос энергии от внутренних слоев, тогда внутри звезды процессы пойдут адиабатически.

Вблизи ядра температура может повыситься и достичь необходимого значения для протекания термоядерных реакций, возможно, и с большим выходом энергии, чем у протон-протонных. Тогда холодная огромная атмосфера будет отброшена растущим давлением и превратится в расширяющуюся газовую туманность, которая может рассеяться в пространстве за сотни тысяч лет. Вероятно, наблюдаемая в созвездии Лиры туманность имеет такое же происхождение.

Соединения ядер гелия возможны, но они дают меньше энергии (до 9 %), чем при соединении ядер водорода. Звезда может продлить свое существование, если из углерода, получающегося при соединении трех атомов гелия, начнут возникать более сложные ядра. Конец наступает при синтезировании железа, которое имеет самые устойчивые ядра и уже не выделяет энергии.

По теории возможен переход в кратковременную стадию -- на несколько миллионов лет -- пульсаций (стадия цефеиды), после чего звезда станет белым карликом. Предполагают, что наше Солнце через миллиарды лет тоже начнет расширяться, достигнет стадии красного гиганта, и, если к тому времени человечество не покинет солнечную систему (или не уничтожит себя раньше этого срока), его судьба будет предрешена. Красные гиганты типа Бетельгейзе (рис. 6) и Антареса развились из звезд Главной последовательности и были массивнее Солнца. Возможно, большие звезды станут инфракрасными гигантами. Таков эволюционный путь звезды с массой, близкой к солнечной.

В отличие от звезд типа нашего Солнца, "жизнь" которых относительно стационарна, существуют и переменные звезды, или звезды, блеск которых меняется (беспорядочно или периодически). Затменно-переменными являются двойные звезды. Отмеченное более тысячи лет назад арабскими астрономами изменение блеска звезды бета Персея отражено в названии этой звезды -- Эль-Гуль, или "дьявол", что в Европе превратилось в Алголь. Причину колебаний ее блеска разгадал английский астроном-любитель Джон Гудрайк (1764--1786), предположив "существование большого тела, вращающегося вокруг Алголя". Он же обнаружил (1784) пульсации звезды дельта Цефея с периодом меньше 0,2 суток.

Еще раньше Давид Фабрициус заметил новую яркую звезду в созвездии Кита, блеск которой менялся с периодом в 348 дней, и назвал ее Миррой ("это красный гигант, находится в созвездии Кита; масса равна примерно массе Солнца. На протяжении года эта звезда то становится достаточно яркой, чтобы ее можно было заметить невооруженным глазом, то тускнеет до такой степени, что ее можно разглядеть лишь в телескоп. Через несколько миллиардов лет наше Солнце, возможно, станет мигать наподобие Миры"(1). Такие долгопериодические переменные звезды -- преимущественно звезды-гиганты "холодного" спектрального класса М.

Впоследствии были обнаружены и классифицированы более 14 тысяч переменных звезд.

Физически переменные звезды на диаграмме "спектр -- светимость" занимают широкую полосу в направлении от Главной последовательности в область гигантов и сверхгигантов. При переходе слева направо период пульсаций звезды, обратно пропорционален корню квадратному из средней плотности звезды. А ведь чем дальше вправо к области сверхгигантов смещена звезда, тем больше ее радиус и меньше ее плотность! Итак, период пульсаций связан со всей структурой звезды. Вероятно, источником пульсаций в этих звездах служит энергия, высвобождающаяся в звездных недрах, которая способна преобразоваться в механическую за счет особенностей ее строения.

Важным типом физически переменных звезд являются цефеиды, названные по звезде дельта Цефея. Существуют цефеиды с периодами от нескольких часов до нескольких суток. Изучение спектров цефеид показывает, что вблизи максимального блеска звезда приближается к нам с наибольшей скоростью, а вблизи минимума -- удаляется (эффект Доплера). Значит, цефеиды периодически сжимаются и расширяются, т. е. это нестационарные пульсирующие звезды.

Но не все звезды проходят такой, относительно спокойный эволюционный путь. Сравнительно часто происходят вспышки Новых звезд (в нашей Галактике до сотни за год), но видеть удается только одну-две из них.

Наиболее мощные взрывы стали называть уже по аналогии Сверхновыми звездами. Вспышка Сверхновой наблюдалась китайскими астрономами еще в 1054г. в созвездии Тельца, и сейчас остатки оболочки этой взорвавшейся звезды наблюдаются в виде Крабовидной туманности. Со временем она рассеется в пространстве, но при вспышках образуются изотопы многих элементов с массовыми числами, большими 60, и именно эти вспышки обогащают газопылевые комплексы тяжелыми элементами. Это объясняет казавшуюся парадоксальной закономерность -- в молодых звездах наблюдается более высокое содержание элементов с атомными массами, большими гелия, чем в старых.

В 1968 г. в английском журнале "Nature" появилась статья (авторы - радиоастрономы А. Хьюиш, С. Белл, И. Пилкингтон, П. Скотт, Р. Коллинз), в которой сообщалось об обнаружении на длине волны 3,68 м необычных радиосигналов длительностью 0,3 с и повторяющихся через 1,337с. Впоследствии оказалось, что эта периодичность поддерживается с точностью до стомиллионной доли секунды в течение полугода, однако амплитуда сигнала меняется. Такой характер сигнала напоминал передачи земных радиостанций, в которых настрого ритмичные высокочастотные сигналы накладываются колебания звуковой частоты. Характер излучения -- пульсирующий -- был не похож на известный ранее (типа цефеид), и источники этого излучения назвали пульсарами.

Конечные судьбы звезд определяются их массами. Гипотезу о том, что возможно существование звезд огромной плотности, состоящих только из нейтронов, высказал Ландау еще в 1932 г. сразу же после открытия нейтрона. Через два года эту идею развили Вальтер Бааде и Ф. Цвикки. Они показали, что такие звезды могут образовываться при взрывах сверхновых как конечная стадия эволюции массивных звезд. Если в ядре звезды образовались атомы железа, то оно будет продолжать сжиматься и разогреваться под действием сил гравитации, В таких условиях железо начнет распадаться на протоны и нейтроны, затем протоны при взаимодействии с электронами превратятся в нейтроны. Так получится компактная звезда, состоящая из нейтронов. Снаружи нейтронное ядро будет обрамлять железная кора, имеющая температуру до 1 млн. К. Размеры звезды примерно 12-15 км при средней плотности 1018 кг/м3. При такой огромной плотности нейтронная жидкость является вырожденной и подчиняется принципу запрета Паули, препятствующему дальнейшему сжатию. В центре нейтронной жидкости возможна примесь кваркового вещества.

Если же при вспышке сверхновой давление вырожденных нейтронов не сможет предотвратить дальнейшее сжатие ядра, начнется гравитационный коллапс. Когда скорость убегания станет равной скорости света, такой коллапс неотвратим, и звезда превратится в черную дыру." (2)

Похожие статьи




Эволюция звезд - Происхождение и эволюция звезд

Предыдущая | Следующая